1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
#include <iostream>
#include <tr1/memory>
#include <queue>
#include <boost/functional.hpp>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
#include "corpus_tools.h"
#include "m.h"
#include "tdict.h"
#include "sampler.h"
#include "ccrp.h"
// A not very memory-efficient implementation of an N-gram LM based on PYPs
// as described in Y.-W. Teh. (2006) A Hierarchical Bayesian Language Model
// based on Pitman-Yor Processes. In Proc. ACL.
// I use templates to handle the recursive formalation of the prior, so
// the order of the model has to be specified here, at compile time:
#define kORDER 3
using namespace std;
using namespace tr1;
namespace po = boost::program_options;
shared_ptr<MT19937> prng;
void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
po::options_description opts("Configuration options");
opts.add_options()
("samples,n",po::value<unsigned>()->default_value(300),"Number of samples")
("train,i",po::value<string>(),"Training data file")
("test,T",po::value<string>(),"Test data file")
("discount_prior_a,a",po::value<double>()->default_value(1.0), "discount ~ Beta(a,b): a=this")
("discount_prior_b,b",po::value<double>()->default_value(1.0), "discount ~ Beta(a,b): b=this")
("strength_prior_s,s",po::value<double>()->default_value(1.0), "strength ~ Gamma(s,r): s=this")
("strength_prior_r,r",po::value<double>()->default_value(1.0), "strength ~ Gamma(s,r): r=this")
("random_seed,S",po::value<uint32_t>(), "Random seed");
po::options_description clo("Command line options");
clo.add_options()
("config", po::value<string>(), "Configuration file")
("help", "Print this help message and exit");
po::options_description dconfig_options, dcmdline_options;
dconfig_options.add(opts);
dcmdline_options.add(opts).add(clo);
po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
if (conf->count("config")) {
ifstream config((*conf)["config"].as<string>().c_str());
po::store(po::parse_config_file(config, dconfig_options), *conf);
}
po::notify(*conf);
if (conf->count("help") || (conf->count("train") == 0)) {
cerr << dcmdline_options << endl;
exit(1);
}
}
template <unsigned N> struct PYPLM;
// uniform base distribution (0-gram model)
template<> struct PYPLM<0> {
PYPLM(unsigned vs, double, double, double, double) : p0(1.0 / vs), draws() {}
void increment(WordID, const vector<WordID>&, MT19937*) { ++draws; }
void decrement(WordID, const vector<WordID>&, MT19937*) { --draws; assert(draws >= 0); }
double prob(WordID, const vector<WordID>&) const { return p0; }
void resample_hyperparameters(MT19937*, const unsigned, const unsigned) {}
double log_likelihood() const { return draws * log(p0); }
const double p0;
int draws;
};
// represents an N-gram LM
template <unsigned N> struct PYPLM {
PYPLM(unsigned vs, double da, double db, double ss, double sr) :
backoff(vs, da, db, ss, sr),
discount_a(da), discount_b(db),
strength_s(ss), strength_r(sr),
d(0.8), alpha(1.0), lookup(N-1) {}
void increment(WordID w, const vector<WordID>& context, MT19937* rng) {
const double bo = backoff.prob(w, context);
for (unsigned i = 0; i < N-1; ++i)
lookup[i] = context[context.size() - 1 - i];
typename unordered_map<vector<WordID>, CCRP<WordID>, boost::hash<vector<WordID> > >::iterator it = p.find(lookup);
if (it == p.end())
it = p.insert(make_pair(lookup, CCRP<WordID>(d,alpha))).first;
if (it->second.increment(w, bo, rng))
backoff.increment(w, context, rng);
}
void decrement(WordID w, const vector<WordID>& context, MT19937* rng) {
for (unsigned i = 0; i < N-1; ++i)
lookup[i] = context[context.size() - 1 - i];
typename unordered_map<vector<WordID>, CCRP<WordID>, boost::hash<vector<WordID> > >::iterator it = p.find(lookup);
assert(it != p.end());
if (it->second.decrement(w, rng))
backoff.decrement(w, context, rng);
}
double prob(WordID w, const vector<WordID>& context) const {
const double bo = backoff.prob(w, context);
for (unsigned i = 0; i < N-1; ++i)
lookup[i] = context[context.size() - 1 - i];
typename unordered_map<vector<WordID>, CCRP<WordID>, boost::hash<vector<WordID> > >::const_iterator it = p.find(lookup);
if (it == p.end()) return bo;
return it->second.prob(w, bo);
}
double log_likelihood() const {
return log_likelihood(d, alpha) + backoff.log_likelihood();
}
double log_likelihood(const double& dd, const double& aa) const {
if (aa <= -dd) return -std::numeric_limits<double>::infinity();
//double llh = Md::log_beta_density(dd, 10, 3) + Md::log_gamma_density(aa, 1, 1);
double llh = Md::log_beta_density(dd, discount_a, discount_b) +
Md::log_gamma_density(aa, strength_s, strength_r);
typename unordered_map<vector<WordID>, CCRP<WordID>, boost::hash<vector<WordID> > >::const_iterator it;
for (it = p.begin(); it != p.end(); ++it)
llh += it->second.log_crp_prob(dd, aa);
return llh;
}
struct DiscountResampler {
DiscountResampler(const PYPLM& m) : m_(m) {}
const PYPLM& m_;
double operator()(const double& proposed_discount) const {
return m_.log_likelihood(proposed_discount, m_.alpha);
}
};
struct AlphaResampler {
AlphaResampler(const PYPLM& m) : m_(m) {}
const PYPLM& m_;
double operator()(const double& proposed_alpha) const {
return m_.log_likelihood(m_.d, proposed_alpha);
}
};
void resample_hyperparameters(MT19937* rng, const unsigned nloop = 5, const unsigned niterations = 10) {
DiscountResampler dr(*this);
AlphaResampler ar(*this);
for (int iter = 0; iter < nloop; ++iter) {
alpha = slice_sampler1d(ar, alpha, *rng, 0.0,
std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations);
d = slice_sampler1d(dr, d, *rng, std::numeric_limits<double>::min(),
1.0, 0.0, niterations, 100*niterations);
}
alpha = slice_sampler1d(ar, alpha, *rng, 0.0,
std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations);
typename unordered_map<vector<WordID>, CCRP<WordID>, boost::hash<vector<WordID> > >::iterator it;
cerr << "PYPLM<" << N << ">(d=" << d << ",a=" << alpha << ") = " << log_likelihood(d, alpha) << endl;
for (it = p.begin(); it != p.end(); ++it) {
it->second.set_discount(d);
it->second.set_alpha(alpha);
}
backoff.resample_hyperparameters(rng, nloop, niterations);
}
PYPLM<N-1> backoff;
double discount_a, discount_b, strength_s, strength_r;
double d, alpha;
mutable vector<WordID> lookup; // thread-local
unordered_map<vector<WordID>, CCRP<WordID>, boost::hash<vector<WordID> > > p;
};
int main(int argc, char** argv) {
po::variables_map conf;
InitCommandLine(argc, argv, &conf);
const unsigned samples = conf["samples"].as<unsigned>();
if (conf.count("random_seed"))
prng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
else
prng.reset(new MT19937);
MT19937& rng = *prng;
vector<vector<WordID> > corpuse;
set<WordID> vocabe;
const WordID kEOS = TD::Convert("</s>");
cerr << "Reading corpus...\n";
CorpusTools::ReadFromFile(conf["train"].as<string>(), &corpuse, &vocabe);
cerr << "E-corpus size: " << corpuse.size() << " sentences\t (" << vocabe.size() << " word types)\n";
vector<vector<WordID> > test;
if (conf.count("test"))
CorpusTools::ReadFromFile(conf["test"].as<string>(), &test);
else
test = corpuse;
PYPLM<kORDER> lm(vocabe.size(),
conf["discount_prior_a"].as<double>(),
conf["discount_prior_b"].as<double>(),
conf["strength_prior_s"].as<double>(),
conf["strength_prior_r"].as<double>());
vector<WordID> ctx(kORDER - 1, TD::Convert("<s>"));
for (int SS=0; SS < samples; ++SS) {
for (int ci = 0; ci < corpuse.size(); ++ci) {
ctx.resize(kORDER - 1);
const vector<WordID>& s = corpuse[ci];
for (int i = 0; i <= s.size(); ++i) {
WordID w = (i < s.size() ? s[i] : kEOS);
if (SS > 0) lm.decrement(w, ctx, &rng);
lm.increment(w, ctx, &rng);
ctx.push_back(w);
}
if (SS > 0) lm.decrement(kEOS, ctx, &rng);
lm.increment(kEOS, ctx, &rng);
}
if (SS % 10 == 9) {
cerr << " [LLH=" << lm.log_likelihood() << "]" << endl;
if (SS % 20 == 19) lm.resample_hyperparameters(&rng);
} else { cerr << '.' << flush; }
}
double llh = 0;
unsigned cnt = 0;
unsigned oovs = 0;
for (int ci = 0; ci < test.size(); ++ci) {
ctx.resize(kORDER - 1);
const vector<WordID>& s = test[ci];
for (int i = 0; i <= s.size(); ++i) {
WordID w = (i < s.size() ? s[i] : kEOS);
double lp = log(lm.prob(w, ctx)) / log(2);
if (i < s.size() && vocabe.count(w) == 0) {
cerr << "**OOV ";
++oovs;
lp = 0;
}
cerr << "p(" << TD::Convert(w) << " |";
for (int j = ctx.size() + 1 - kORDER; j < ctx.size(); ++j)
cerr << ' ' << TD::Convert(ctx[j]);
cerr << ") = " << lp << endl;
ctx.push_back(w);
llh -= lp;
cnt++;
}
}
cerr << " Log_10 prob: " << (-llh * log(2) / log(10)) << endl;
cerr << " Count: " << cnt << endl;
cerr << " OOVs: " << oovs << endl;
cerr << "Cross-entropy: " << (llh / cnt) << endl;
cerr << " Perplexity: " << pow(2, llh / cnt) << endl;
return 0;
}
|