1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
|
/*
* Score a grammar in striped format
* ./score_grammar <alignment> < filtered.grammar > scored.grammar
*/
#include <iostream>
#include <string>
#include <map>
#include <vector>
#include <utility>
#include <cstdlib>
#include <fstream>
#include <tr1/unordered_map>
#include "sentence_pair.h"
#include "extract.h"
#include "fdict.h"
#include "tdict.h"
#include "lex_trans_tbl.h"
#include "filelib.h"
#include <boost/functional/hash.hpp>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
using namespace std;
using namespace std::tr1;
static const size_t MAX_LINE_LENGTH = 64000000;
typedef unordered_map<vector<WordID>, RuleStatistics, boost::hash<vector<WordID> > > ID2RuleStatistics;
namespace {
inline bool IsWhitespace(char c) { return c == ' ' || c == '\t'; }
inline bool IsBracket(char c){return c == '[' || c == ']';}
inline void SkipWhitespace(const char* buf, int* ptr) {
while (buf[*ptr] && IsWhitespace(buf[*ptr])) { ++(*ptr); }
}
}
int ReadPhraseUntilDividerOrEnd(const char* buf, const int sstart, const int end, vector<WordID>* p) {
static const WordID kDIV = TD::Convert("|||");
int ptr = sstart;
while(ptr < end) {
while(ptr < end && IsWhitespace(buf[ptr])) { ++ptr; }
int start = ptr;
while(ptr < end && !IsWhitespace(buf[ptr])) { ++ptr; }
if (ptr == start) {cerr << "Warning! empty token.\n"; return ptr; }
const WordID w = TD::Convert(string(buf, start, ptr - start));
if((IsBracket(buf[start]) and IsBracket(buf[ptr-1])) or( w == kDIV))
p->push_back(1 * w);
else {
if (w == kDIV) return ptr;
p->push_back(w);
}
}
return ptr;
}
void ParseLine(const char* buf, vector<WordID>* cur_key, ID2RuleStatistics* counts) {
static const WordID kDIV = TD::Convert("|||");
counts->clear();
int ptr = 0;
while(buf[ptr] != 0 && buf[ptr] != '\t') { ++ptr; }
if (buf[ptr] != '\t') {
cerr << "Missing tab separator between key and value!\n INPUT=" << buf << endl;
exit(1);
}
cur_key->clear();
// key is: "[X] ||| word word word"
int tmpp = ReadPhraseUntilDividerOrEnd(buf, 0, ptr, cur_key);
cur_key->push_back(kDIV);
ReadPhraseUntilDividerOrEnd(buf, tmpp, ptr, cur_key);
++ptr;
int start = ptr;
int end = ptr;
int state = 0; // 0=reading label, 1=reading count
vector<WordID> name;
while(buf[ptr] != 0) {
while(buf[ptr] != 0 && buf[ptr] != '|') { ++ptr; }
if (buf[ptr] == '|') {
++ptr;
if (buf[ptr] == '|') {
++ptr;
if (buf[ptr] == '|') {
++ptr;
end = ptr - 3;
while (end > start && IsWhitespace(buf[end-1])) { --end; }
if (start == end) {
cerr << "Got empty token!\n LINE=" << buf << endl;
exit(1);
}
switch (state) {
case 0: ++state; name.clear(); ReadPhraseUntilDividerOrEnd(buf, start, end, &name); break;
case 1: --state; (*counts)[name].ParseRuleStatistics(buf, start, end); break;
default: cerr << "Can't happen\n"; abort();
}
SkipWhitespace(buf, &ptr);
start = ptr;
}
}
}
}
end=ptr;
while (end > start && IsWhitespace(buf[end-1])) { --end; }
if (end > start) {
switch (state) {
case 0: ++state; name.clear(); ReadPhraseUntilDividerOrEnd(buf, start, end, &name); break;
case 1: --state; (*counts)[name].ParseRuleStatistics(buf, start, end); break;
default: cerr << "Can't happen\n"; abort();
}
}
}
void LexTranslationTable::createTTable(const char* buf){
bool DEBUG = false;
AnnotatedParallelSentence sent;
sent.ParseInputLine(buf);
//iterate over the alignment to compute aligned words
for(int i =0;i<sent.aligned.width();i++)
{
for (int j=0;j<sent.aligned.height();j++)
{
if (DEBUG) cerr << sent.aligned(i,j) << " ";
if( sent.aligned(i,j))
{
if (DEBUG) cerr << TD::Convert(sent.f[i]) << " aligned to " << TD::Convert(sent.e[j]);
++word_translation[pair<WordID,WordID> (sent.f[i], sent.e[j])];
++total_foreign[sent.f[i]];
++total_english[sent.e[j]];
}
}
if (DEBUG) cerr << endl;
}
if (DEBUG) cerr << endl;
static const WordID NULL_ = TD::Convert("NULL");
//handle unaligned words - align them to null
for (int j =0; j < sent.e_len; j++)
{
if (sent.e_aligned[j]) continue;
++word_translation[pair<WordID,WordID> (NULL_, sent.e[j])];
++total_foreign[NULL_];
++total_english[sent.e[j]];
}
for (int i =0; i < sent.f_len; i++)
{
if (sent.f_aligned[i]) continue;
++word_translation[pair<WordID,WordID> (sent.f[i], NULL_)];
++total_english[NULL_];
++total_foreign[sent.f[i]];
}
}
inline float safenlog(float v) {
if (v == 1.0f) return 0.0f;
float res = -log(v);
if (res > 100.0f) res = 100.0f;
return res;
}
int main(int argc, char** argv){
bool DEBUG= false;
if (argc != 2) {
cerr << "Usage: " << argv[0] << " corpus.al < filtered.grammar\n";
return 1;
}
ifstream alignment (argv[1]);
istream& unscored_grammar = cin;
ostream& scored_grammar = cout;
//create lexical translation table
cerr << "Creating table..." << endl;
char* buf = new char[MAX_LINE_LENGTH];
LexTranslationTable table;
while(!alignment.eof())
{
alignment.getline(buf, MAX_LINE_LENGTH);
if (buf[0] == 0) continue;
table.createTTable(buf);
}
bool PRINT_TABLE=false;
if (PRINT_TABLE)
{
ofstream trans_table;
trans_table.open("lex_trans_table.out");
for(map < pair<WordID,WordID>,int >::iterator it = table.word_translation.begin(); it != table.word_translation.end(); ++it)
{
trans_table << TD::Convert(it->first.first) << "|||" << TD::Convert(it->first.second) << "==" << it->second << "//" << table.total_foreign[it->first.first] << "//" << table.total_english[it->first.second] << endl;
}
trans_table.close();
}
//score unscored grammar
cerr <<"Scoring grammar..." << endl;
ID2RuleStatistics acc, cur_counts;
vector<WordID> key, cur_key,temp_key;
vector< pair<short,short> > al;
vector< pair<short,short> >::iterator ita;
int line = 0;
static const int kCF = FD::Convert("CF");
static const int kCE = FD::Convert("CE");
static const int kCFE = FD::Convert("CFE");
while(!unscored_grammar.eof())
{
++line;
unscored_grammar.getline(buf, MAX_LINE_LENGTH);
if (buf[0] == 0) continue;
ParseLine(buf, &cur_key, &cur_counts);
//loop over all the Target side phrases that this source aligns to
for (ID2RuleStatistics::const_iterator it = cur_counts.begin(); it != cur_counts.end(); ++it)
{
/*Compute phrase translation prob.
Print out scores in this format:
Phrase trnaslation prob P(F|E)
Phrase translation prob P(E|F)
Lexical weighting prob lex(F|E)
Lexical weighting prob lex(E|F)
*/
float pEF_ = it->second.counts.value(kCFE) / it->second.counts.value(kCF);
float pFE_ = it->second.counts.value(kCFE) / it->second.counts.value(kCE);
map <WordID, pair<int, float> > foreign_aligned;
map <WordID, pair<int, float> > english_aligned;
//Loop over all the alignment points to compute lexical translation probability
al = it->second.aligns;
for(ita = al.begin(); ita != al.end(); ++ita)
{
if (DEBUG)
{
cerr << "\nA:" << ita->first << "," << ita->second << "::";
cerr << TD::Convert(cur_key[ita->first + 2]) << "-" << TD::Convert(it->first[ita->second]);
}
//Lookup this alignment probability in the table
int temp = table.word_translation[pair<WordID,WordID> (cur_key[ita->first+2],it->first[ita->second])];
float f2e=0, e2f=0;
if ( table.total_foreign[cur_key[ita->first+2]] != 0)
f2e = (float) temp / table.total_foreign[cur_key[ita->first+2]];
if ( table.total_english[it->first[ita->second]] !=0 )
e2f = (float) temp / table.total_english[it->first[ita->second]];
if (DEBUG) printf (" %d %E %E\n", temp, f2e, e2f);
//local counts to keep track of which things haven't been aligned, to later compute their null alignment
if (foreign_aligned.count(cur_key[ita->first+2]))
{
foreign_aligned[ cur_key[ita->first+2] ].first++;
foreign_aligned[ cur_key[ita->first+2] ].second += e2f;
}
else
foreign_aligned [ cur_key[ita->first+2] ] = pair<int,float> (1,e2f);
if (english_aligned.count( it->first[ ita->second] ))
{
english_aligned[ it->first[ ita->second ]].first++;
english_aligned[ it->first[ ita->second] ].second += f2e;
}
else
english_aligned [ it->first[ ita->second] ] = pair<int,float> (1,f2e);
}
float final_lex_f2e=1, final_lex_e2f=1;
static const WordID NULL_ = TD::Convert("NULL");
//compute lexical weight P(F|E) and include unaligned foreign words
for(int i=0;i<cur_key.size(); i++)
{
if (!table.total_foreign.count(cur_key[i])) continue; //if we dont have it in the translation table, we won't know its lexical weight
if (foreign_aligned.count(cur_key[i]))
{
pair<int, float> temp_lex_prob = foreign_aligned[cur_key[i]];
final_lex_e2f *= temp_lex_prob.second / temp_lex_prob.first;
}
else //dealing with null alignment
{
int temp_count = table.word_translation[pair<WordID,WordID> (cur_key[i],NULL_)];
float temp_e2f = (float) temp_count / table.total_english[NULL_];
final_lex_e2f *= temp_e2f;
}
}
//compute P(E|F) unaligned english words
for(int j=0; j< it->first.size(); j++)
{
if (!table.total_english.count(it->first[j])) continue;
if (english_aligned.count(it->first[j]))
{
pair<int, float> temp_lex_prob = english_aligned[it->first[j]];
final_lex_f2e *= temp_lex_prob.second / temp_lex_prob.first;
}
else //dealing with null
{
int temp_count = table.word_translation[pair<WordID,WordID> (NULL_,it->first[j])];
float temp_f2e = (float) temp_count / table.total_foreign[NULL_];
final_lex_f2e *= temp_f2e;
}
}
scored_grammar << TD::GetString(cur_key);
scored_grammar << " " << TD::GetString(it->first) << " |||";
scored_grammar << " FGivenE=" << safenlog(pFE_) << " EGivenF=" << safenlog(pEF_);
scored_grammar << " LexE2F=" << safenlog(final_lex_e2f) << " LexF2E=" << safenlog(final_lex_f2e) << endl;
}
}
}
|