1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
|
#include "extract.h"
#include <queue>
#include <vector>
#include <utility>
#include <tr1/unordered_map>
#include <set>
#include <boost/functional/hash.hpp>
#include "sentence_pair.h"
#include "tdict.h"
#include "wordid.h"
#include "array2d.h"
using namespace std;
using namespace tr1;
namespace {
inline bool IsWhitespace(char c) { return c == ' ' || c == '\t'; }
inline void SkipWhitespace(const char* buf, int* ptr) {
while (buf[*ptr] && IsWhitespace(buf[*ptr])) { ++(*ptr); }
}
}
Extract::RuleObserver::~RuleObserver() {
cerr << "Rules extracted: " << count << endl;
}
void Extract::ExtractBasePhrases(const int max_base_phrase_size,
const AnnotatedParallelSentence& sentence,
vector<ParallelSpan>* phrases) {
phrases->clear();
vector<pair<int,int> > f_spans(sentence.f_len, pair<int,int>(sentence.e_len, 0));
vector<pair<int,int> > e_spans(sentence.e_len, pair<int,int>(sentence.f_len, 0));
// for each alignment point in e, precompute the minimal consistent phrases in f
// for each alignment point in f, precompute the minimal consistent phrases in e
for (int i = 0; i < sentence.f_len; ++i) {
for (int j = 0; j < sentence.e_len; ++j) {
if (sentence.aligned(i,j)) {
if (j < f_spans[i].first) f_spans[i].first = j;
f_spans[i].second = j+1;
if (i < e_spans[j].first) e_spans[j].first = i;
e_spans[j].second = i+1;
}
}
}
for (int i1 = 0; i1 < sentence.f_len; ++i1) {
if (sentence.f_aligned[i1] == 0) continue;
int j1 = sentence.e_len;
int j2 = 0;
const int i_limit = min(sentence.f_len, i1 + max_base_phrase_size);
for (int i2 = i1 + 1; i2 <= i_limit; ++i2) {
if (sentence.f_aligned[i2-1] == 0) continue;
// cerr << "F has aligned span " << i1 << " to " << i2 << endl;
j1 = min(j1, f_spans[i2-1].first);
j2 = max(j2, f_spans[i2-1].second);
if (j1 >= j2) continue;
if (j2 - j1 > max_base_phrase_size) continue;
int condition = 0;
for (int j = j1; j < j2; ++j) {
if (e_spans[j].first < i1) { condition = 1; break; }
if (e_spans[j].second > i2) { condition = 2; break; }
}
if (condition == 1) break;
if (condition == 2) continue;
// category types added later!
phrases->push_back(ParallelSpan(i1, i2, j1, j2));
// cerr << i1 << " " << i2 << " : " << j1 << " " << j2 << endl;
}
}
}
void Extract::LoosenPhraseBounds(const AnnotatedParallelSentence& sentence,
const int max_base_phrase_size,
vector<ParallelSpan>* phrases) {
const int num_phrases = phrases->size();
map<int, map<int, map<int, map<int, bool> > > > marker;
for (int i = 0; i < num_phrases; ++i) {
const ParallelSpan& cur = (*phrases)[i];
marker[cur.i1][cur.i2][cur.j1][cur.j2] = true;
}
for (int i = 0; i < num_phrases; ++i) {
const ParallelSpan& cur = (*phrases)[i];
const int i1_max = cur.i1;
const int i2_min = cur.i2;
const int j1_max = cur.j1;
const int j2_min = cur.j2;
int i1_min = i1_max;
while (i1_min > 0 && sentence.f_aligned[i1_min-1] == 0) { --i1_min; }
int j1_min = j1_max;
while (j1_min > 0 && sentence.e_aligned[j1_min-1] == 0) { --j1_min; }
int i2_max = i2_min;
while (i2_max < sentence.f_len && sentence.f_aligned[i2_max] == 0) { ++i2_max; }
int j2_max = j2_min;
while (j2_max < sentence.e_len && sentence.e_aligned[j2_max] == 0) { ++j2_max; }
for (int i1 = i1_min; i1 <= i1_max; ++i1) {
const int ilim = min(i2_max, i1 + max_base_phrase_size);
for (int i2 = max(i1+1,i2_min); i2 <= ilim; ++i2) {
for (int j1 = j1_min; j1 <= j1_max; ++j1) {
const int jlim = min(j2_max, j1 + max_base_phrase_size);
for (int j2 = max(j1+1, j2_min); j2 <= jlim; ++j2) {
bool& seen = marker[i1][i2][j1][j2];
if (!seen)
phrases->push_back(ParallelSpan(i1,i2,j1,j2));
seen = true;
}
}
}
}
}
}
// this uses the TARGET span (i,j) to annotate phrases, will copy
// phrases if there is more than one annotation.
// TODO: support source annotation
void Extract::AnnotatePhrasesWithCategoryTypes(const WordID default_cat,
const Array2D<vector<WordID> >& types,
vector<ParallelSpan>* phrases) {
const int num_unannotated_phrases = phrases->size();
// have to use num_unannotated_phrases since we may grow the vector
for (int i = 0; i < num_unannotated_phrases; ++i) {
ParallelSpan& phrase = (*phrases)[i];
const vector<WordID>* pcats = &types(phrase.j1, phrase.j2);
if (pcats->empty() && default_cat != 0) {
static vector<WordID> s_default(1, default_cat);
pcats = &s_default;
}
if (pcats->empty()) {
cerr << "ERROR span " << phrase.i1 << "," << phrase.i2 << "-"
<< phrase.j1 << "," << phrase.j2 << " has no type. "
"Did you forget --default_category?\n";
}
const vector<WordID>& cats = *pcats;
phrase.cat = cats[0];
for (int ci = 1; ci < cats.size(); ++ci) {
ParallelSpan new_phrase = phrase;
new_phrase.cat = cats[ci];
phrases->push_back(new_phrase);
}
}
}
// a partially complete (f-side) of a rule
struct RuleItem {
vector<ParallelSpan> f;
int i,j,syms,vars;
explicit RuleItem(int pi) : i(pi), j(pi), syms(), vars() {}
void Extend(const WordID& fword) {
f.push_back(ParallelSpan(fword));
++j;
++syms;
}
void Extend(const ParallelSpan& subphrase) {
f.push_back(subphrase);
j += subphrase.i2 - subphrase.i1;
++vars;
++syms;
}
bool RuleFEndsInVariable() const {
if (f.size() > 0) {
return f.back().IsVariable();
} else { return false; }
}
};
void Extract::ExtractConsistentRules(const AnnotatedParallelSentence& sentence,
const vector<ParallelSpan>& phrases,
const int max_vars,
const int max_syms,
const bool permit_adjacent_nonterminals,
const bool require_aligned_terminal,
RuleObserver* observer,
vector<WordID>* all_cats) {
const char bkoff_mrkr = '_';
queue<RuleItem> q; // agenda for BFS
int max_len = -1;
unordered_map<pair<short, short>, vector<ParallelSpan>, boost::hash<pair<short, short> > > fspans;
vector<vector<ParallelSpan> > spans_by_start(sentence.f_len);
set<int> starts;
WordID bkoff;
for (int i = 0; i < phrases.size(); ++i) {
fspans[make_pair(phrases[i].i1,phrases[i].i2)].push_back(phrases[i]);
max_len = max(max_len, phrases[i].i2 - phrases[i].i1);
// have we already added a rule item starting at phrases[i].i1?
if (starts.insert(phrases[i].i1).second)
q.push(RuleItem(phrases[i].i1));
spans_by_start[phrases[i].i1].push_back(phrases[i]);
}
starts.clear();
vector<pair<int,int> > next_e(sentence.e_len);
vector<WordID> cur_rhs_f, cur_rhs_e;
vector<pair<short, short> > cur_terminal_align;
vector<int> cur_es, cur_fs;
while(!q.empty()) {
const RuleItem& rule = q.front();
// extend the partial rule
if (rule.j < sentence.f_len && (rule.j - rule.i) < max_len && rule.syms < max_syms) {
RuleItem ew = rule;
// extend with a word
ew.Extend(sentence.f[ew.j]);
q.push(ew);
// with variables
if (rule.vars < max_vars &&
!spans_by_start[rule.j].empty() &&
((!rule.RuleFEndsInVariable()) || permit_adjacent_nonterminals)) {
const vector<ParallelSpan>& sub_phrases = spans_by_start[rule.j];
for (int it = 0; it < sub_phrases.size(); ++it) {
if (sub_phrases[it].i2 - sub_phrases[it].i1 + rule.j - rule.i <= max_len) {
RuleItem ev = rule;
ev.Extend(sub_phrases[it]);
q.push(ev);
assert(ev.j <= sentence.f_len);
}
}
}
}
// determine if rule is consistent
if (rule.syms > 0 &&
fspans.count(make_pair(rule.i,rule.j)) &&
(!rule.RuleFEndsInVariable() || rule.syms > 1)) {
const vector<ParallelSpan>& orig_spans = fspans[make_pair(rule.i,rule.j)];
for (int s = 0; s < orig_spans.size(); ++s) {
const ParallelSpan& orig_span = orig_spans[s];
const WordID lhs = orig_span.cat;
for (int j = orig_span.j1; j < orig_span.j2; ++j) next_e[j].first = -1;
int nt_index_e = 0;
for (int i = 0; i < rule.f.size(); ++i) {
const ParallelSpan& cur = rule.f[i];
if (cur.IsVariable())
next_e[cur.j1] = pair<int,int>(cur.j2, ++nt_index_e);
}
cur_rhs_f.clear();
cur_rhs_e.clear();
cur_terminal_align.clear();
cur_fs.clear();
cur_es.clear();
const int elen = orig_span.j2 - orig_span.j1;
vector<int> isvar(elen, 0);
int fbias = rule.i;
bool bad_rule = false;
bool has_aligned_terminal = false;
for (int i = 0; i < rule.f.size(); ++i) {
const ParallelSpan& cur = rule.f[i];
cur_rhs_f.push_back(cur.cat);
if (cur.cat > 0) { // terminal
if (sentence.f_aligned[fbias + i]) has_aligned_terminal = true;
cur_fs.push_back(fbias + i);
} else { // non-terminal
int subj1 = cur.j1 - orig_span.j1;
int subj2 = cur.j2 - orig_span.j1;
if (subj1 < 0 || subj2 > elen) { bad_rule = true; break; }
for (int j = subj1; j < subj2 && !bad_rule; ++j) {
int& isvarj = isvar[j];
isvarj = true;
}
if (bad_rule) break;
cur_fs.push_back(-1);
fbias += cur.i2 - cur.i1 - 1;
}
}
if (require_aligned_terminal && !has_aligned_terminal) bad_rule = true;
if (!bad_rule) {
for (int j = orig_span.j1; j < orig_span.j2; ++j) {
if (next_e[j].first < 0) {
cur_rhs_e.push_back(sentence.e[j]);
cur_es.push_back(j);
} else {
cur_rhs_e.push_back(1 - next_e[j].second); // next_e[j].second is NT gap index
cur_es.push_back(-1);
j = next_e[j].first - 1;
}
}
for (short i = 0; i < cur_fs.size(); ++i)
if (cur_fs[i] >= 0)
for (short j = 0; j < cur_es.size(); ++j)
if (cur_es[j] >= 0 && sentence.aligned(cur_fs[i],cur_es[j]))
cur_terminal_align.push_back(make_pair(i,j));
//observer->CountRule(lhs, cur_rhs_f, cur_rhs_e, cur_terminal_align);
if(!all_cats->empty()) {
//produce the backoff grammar if the category wordIDs are available
for (int i = 0; i < cur_rhs_f.size(); ++i) {
if(cur_rhs_f[i] < 0) {
//cerr << cur_rhs_f[i] << ": (cats,f) |" << TD::Convert(-cur_rhs_f[i]) << endl;
string nonterm = TD::Convert(-cur_rhs_f[i]);
nonterm+=bkoff_mrkr;
bkoff = -TD::Convert(nonterm);
cur_rhs_f[i]=bkoff;
/*vector<WordID> rhs_f_bkoff;
vector<WordID> rhs_e_bkoff;
vector<pair<short,short> > bkoff_align;
bkoff_align.clear();
bkoff_align.push_back(make_pair(0,0));
for (int cat = 0; cat < all_cats->size(); ++cat) {
rhs_f_bkoff.clear();
rhs_e_bkoff.clear();
rhs_f_bkoff.push_back(-(*all_cats)[cat]);
rhs_e_bkoff.push_back(0);
observer->CountRule(bkoff,rhs_f_bkoff,rhs_e_bkoff,bkoff_align);
}*/
}
}
}
observer->CountRule(lhs, cur_rhs_f, cur_rhs_e, cur_terminal_align);
}
}
}
q.pop();
}
}
|