summaryrefslogtreecommitdiff
path: root/dtrain/kbestget.h
blob: 2a2c6073bd270e7612ad34b1d7dc2cfd44dc4902 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#ifndef _DTRAIN_KBESTGET_H_
#define _DTRAIN_KBESTGET_H_


#include <vector>
#include <string>

using namespace std;

#include "kbest.h" // cdec
#include "verbose.h"
#include "viterbi.h"
#include "ff_register.h"
#include "decoder.h"
#include "weights.h"

namespace dtrain
{

typedef double score_t; // float


struct ScoredHyp
{
  vector<WordID> w;
  SparseVector<double> f;
  score_t model;
  score_t score;
  unsigned rank;
};

struct HypSampler : public DecoderObserver
{
  virtual vector<ScoredHyp>* GetSamples()=0;
};

struct KBestGetter : public HypSampler
{
  const unsigned k_;
  const string filter_type_;
  vector<ScoredHyp> s_;

  KBestGetter(const unsigned k, const string filter_type) :
    k_(k), filter_type_(filter_type) {}

  virtual void
  NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg)
  {
    KBest(*hg);
  }

  vector<ScoredHyp>* GetSamples() { return &s_; }

  void
  KBest(const Hypergraph& forest)
  {
    if (filter_type_ == "unique") {
      KBestUnique(forest);
    } else if (filter_type_ == "no") {
      KBestNoFilter(forest);
    }
  }

  void
  KBestUnique(const Hypergraph& forest)
  {
    s_.clear();
    KBest::KBestDerivations<vector<WordID>, ESentenceTraversal,
      KBest::FilterUnique, prob_t, EdgeProb> kbest(forest, k_);
    for (unsigned i = 0; i < k_; ++i) {
      const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal, KBest::FilterUnique,
              prob_t, EdgeProb>::Derivation* d =
            kbest.LazyKthBest(forest.nodes_.size() - 1, i);
      if (!d) break;
      ScoredHyp h;
      h.w = d->yield;
      h.f = d->feature_values;
      h.model = log(d->score);
      h.rank = i;
      s_.push_back(h);
    }
  }

  void
  KBestNoFilter(const Hypergraph& forest)
  {
    s_.clear();
    KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(forest, k_);
    for (unsigned i = 0; i < k_; ++i) {
      const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d =
            kbest.LazyKthBest(forest.nodes_.size() - 1, i);
      if (!d) break;
      ScoredHyp h;
      h.w = d->yield;
      h.f = d->feature_values;
      h.model = log(d->score);
      h.rank = i;
      s_.push_back(h);
    }
  }
};


} // namespace

#endif