1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
|
#include "dtrain.h"
bool
dtrain_init(int argc, char** argv, po::variables_map* cfg)
{
po::options_description ini("Configuration File Options");
ini.add_options()
("input", po::value<string>()->default_value("-"), "input file")
("output", po::value<string>()->default_value("-"), "output weights file (or VOID)")
("input_weights", po::value<string>(), "input weights file (e.g. from previous iteration)")
("decoder_config", po::value<string>(), "configuration file for cdec")
("k", po::value<unsigned>()->default_value(100), "size of kbest or sample from forest")
("sample_from", po::value<string>()->default_value("kbest"), "where to get translations from")
("filter", po::value<string>()->default_value("unique"), "filter kbest list")
("pair_sampling", po::value<string>()->default_value("all"), "how to sample pairs: all, rand")
("N", po::value<unsigned>()->default_value(3), "N for Ngrams")
("epochs", po::value<unsigned>()->default_value(2), "# of iterations T")
("scorer", po::value<string>()->default_value("stupid_bleu"), "scoring metric")
("stop_after", po::value<unsigned>()->default_value(0), "stop after X input sentences")
("print_weights", po::value<string>(), "weights to print on each iteration")
("hstreaming", po::value<bool>()->zero_tokens(), "run in hadoop streaming mode")
("learning_rate", po::value<double>()->default_value(0.0005), "learning rate")
("gamma", po::value<double>()->default_value(0.), "gamma for SVM (0 for perceptron)")
("tmp", po::value<string>()->default_value("/tmp"), "temp dir to use") // FIXME
("noup", po::value<bool>()->zero_tokens(), "do not update weights");
po::options_description cl("Command Line Options");
cl.add_options()
("config,c", po::value<string>(), "dtrain config file")
("quiet,q", po::value<bool>()->zero_tokens(), "be quiet")
("verbose,v", po::value<bool>()->zero_tokens(), "be verbose");
cl.add(ini);
po::store(parse_command_line(argc, argv, cl), *cfg);
if (cfg->count("config")) {
ifstream ini_f((*cfg)["config"].as<string>().c_str());
po::store(po::parse_config_file(ini_f, ini), *cfg);
}
po::notify(*cfg);
if (!cfg->count("decoder_config")) {
cerr << cl << endl;
return false;
}
if (cfg->count("hstreaming") && (*cfg)["output"].as<string>() != "-") {
cerr << "When using 'hstreaming' the 'output' param should be '-'.";
return false;
}
if ((*cfg)["filter"].as<string>() != "unique"
&& (*cfg)["filter"].as<string>() != "no") {
cerr << "Wrong 'filter' param: '" << (*cfg)["filter"].as<string>() << "', use 'unique' or 'no'." << endl;
}
if ((*cfg)["pair_sampling"].as<string>() != "all"
&& (*cfg)["pair_sampling"].as<string>() != "rand") {
cerr << "Wrong 'pair_sampling' param: '" << (*cfg)["pair_sampling"].as<string>() << "', use 'all' or 'rand'." << endl;
}
if ((*cfg)["sample_from"].as<string>() != "kbest"
&& (*cfg)["sample_from"].as<string>() != "forest") {
cerr << "Wrong 'sample_from' param: '" << (*cfg)["sample_from"].as<string>() << "', use 'kbest' or 'forest'." << endl;
}
return true;
}
int
main(int argc, char** argv)
{
// handle most parameters
po::variables_map cfg;
if (!dtrain_init(argc, argv, &cfg)) exit(1); // something is wrong
bool quiet = false;
if (cfg.count("quiet")) quiet = true;
bool verbose = false;
if (cfg.count("verbose")) verbose = true;
bool noup = false;
if (cfg.count("noup")) noup = true;
bool hstreaming = false;
if (cfg.count("hstreaming")) {
hstreaming = true;
quiet = true;
}
const unsigned k = cfg["k"].as<unsigned>();
const unsigned N = cfg["N"].as<unsigned>();
const unsigned T = cfg["epochs"].as<unsigned>();
const unsigned stop_after = cfg["stop_after"].as<unsigned>();
const string filter_type = cfg["filter"].as<string>();
const string sample_from = cfg["sample_from"].as<string>();
const string pair_sampling = cfg["pair_sampling"].as<string>();
vector<string> print_weights;
if (cfg.count("print_weights"))
boost::split(print_weights, cfg["print_weights"].as<string>(), boost::is_any_of(" "));
// setup decoder
register_feature_functions();
SetSilent(true);
ReadFile ini_rf(cfg["decoder_config"].as<string>());
if (!quiet)
cerr << setw(25) << "cdec cfg " << "'" << cfg["decoder_config"].as<string>() << "'" << endl;
Decoder decoder(ini_rf.stream());
MT19937 rng; // random number generator
// setup decoder observer
HypSampler* observer;
if (sample_from == "kbest") {
observer = dynamic_cast<KBestGetter*>(new KBestGetter(k, filter_type));
} else {
observer = dynamic_cast<KSampler*>(new KSampler(k, &rng));
}
// scoring metric/scorer
string scorer_str = cfg["scorer"].as<string>();
score_t (*scorer)(NgramCounts&, const unsigned, const unsigned, unsigned, vector<score_t>);
if (scorer_str == "bleu") {
scorer = &bleu;
} else if (scorer_str == "stupid_bleu") {
scorer = &stupid_bleu;
} else if (scorer_str == "smooth_bleu") {
scorer = &smooth_bleu;
} else if (scorer_str == "approx_bleu") {
scorer = &approx_bleu;
} else {
cerr << "Don't know scoring metric: '" << scorer_str << "', exiting." << endl;
exit(1);
}
NgramCounts global_counts(N); // counts for 1 best translations
unsigned global_hyp_len = 0; // sum hypothesis lengths
unsigned global_ref_len = 0; // sum reference lengths
// ^^^ global_* for approx_bleu
vector<score_t> bleu_weights; // we leave this empty -> 1/N
if (!quiet) cerr << setw(26) << "scorer '" << scorer_str << "'" << endl << endl;
// init weights
Weights weights;
if (cfg.count("input_weights")) weights.InitFromFile(cfg["input_weights"].as<string>());
SparseVector<double> lambdas;
weights.InitSparseVector(&lambdas);
vector<double> dense_weights;
// meta params for perceptron, SVM
double eta = cfg["learning_rate"].as<double>();
double gamma = cfg["gamma"].as<double>();
lambdas.add_value(FD::Convert("__bias"), 0);
// input
string input_fn = cfg["input"].as<string>();
ReadFile input(input_fn);
// buffer input for t > 0
vector<string> src_str_buf; // source strings
vector<vector<WordID> > ref_ids_buf; // references as WordID vecs
// this is for writing the grammar buffer file
char grammar_buf_fn[] = DTRAIN_TMP_DIR"/dtrain-grammars-XXXXXX";
mkstemp(grammar_buf_fn);
ogzstream grammar_buf_out;
grammar_buf_out.open(grammar_buf_fn);
unsigned in_sz = 999999999; // input index, input size
vector<pair<score_t,score_t> > all_scores;
score_t max_score = 0.;
unsigned best_it = 0;
float overall_time = 0.;
// output cfg
if (!quiet) {
cerr << _p5;
cerr << endl << "dtrain" << endl << "Parameters:" << endl;
cerr << setw(25) << "k " << k << endl;
cerr << setw(25) << "N " << N << endl;
cerr << setw(25) << "T " << T << endl;
if (cfg.count("stop-after"))
cerr << setw(25) << "stop_after " << stop_after << endl;
if (cfg.count("input_weights"))
cerr << setw(25) << "weights in" << cfg["input_weights"].as<string>() << endl;
cerr << setw(25) << "input " << "'" << cfg["input"].as<string>() << "'" << endl;
cerr << setw(25) << "output " << "'" << cfg["output"].as<string>() << "'" << endl;
if (sample_from == "kbest")
cerr << setw(25) << "filter " << "'" << filter_type << "'" << endl;
cerr << setw(25) << "learning rate " << eta << endl;
cerr << setw(25) << "gamma " << gamma << endl;
cerr << setw(25) << "sample from " << "'" << sample_from << "'" << endl;
cerr << setw(25) << "pairs " << "'" << pair_sampling << "'" << endl;
if (!verbose) cerr << "(a dot represents " << DTRAIN_DOTS << " lines of input)" << endl;
}
for (unsigned t = 0; t < T; t++) // T epochs
{
time_t start, end;
time(&start);
igzstream grammar_buf_in;
if (t > 0) grammar_buf_in.open(grammar_buf_fn);
score_t score_sum = 0., model_sum = 0.;
unsigned ii = 0;
if (!quiet) cerr << "Iteration #" << t+1 << " of " << T << "." << endl;
while(true)
{
string in;
bool next = false, stop = false; // next iteration or premature stop
if (t == 0) {
if(!getline(*input, in)) next = true;
} else {
if (ii == in_sz) next = true; // stop if we reach the end of our input
}
// stop after X sentences (but still iterate for those)
if (stop_after > 0 && stop_after == ii && !next) stop = true;
// produce some pretty output
if (!quiet && !verbose) {
if (ii == 0) cerr << " ";
if ((ii+1) % (DTRAIN_DOTS) == 0) {
cerr << ".";
cerr.flush();
}
if ((ii+1) % (20*DTRAIN_DOTS) == 0) {
cerr << " " << ii+1 << endl;
if (!next && !stop) cerr << " ";
}
if (stop) {
if (ii % (20*DTRAIN_DOTS) != 0) cerr << " " << ii << endl;
cerr << "Stopping after " << stop_after << " input sentences." << endl;
} else {
if (next) {
if (ii % (20*DTRAIN_DOTS) != 0) cerr << " " << ii << endl;
}
}
}
// next iteration
if (next || stop) break;
// weights
dense_weights.clear();
weights.InitFromVector(lambdas);
weights.InitVector(&dense_weights);
decoder.SetWeights(dense_weights);
// getting input
vector<string> in_split; // input: sid\tsrc\tref\tpsg
vector<WordID> ref_ids; // reference as vector<WordID>
if (t == 0) {
// handling input
strsplit(in, in_split, '\t', 4);
// getting reference
ref_ids.clear();
vector<string> ref_tok;
strsplit(in_split[2], ref_tok, ' ');
register_and_convert(ref_tok, ref_ids);
ref_ids_buf.push_back(ref_ids);
// process and set grammar
bool broken_grammar = true;
for (string::iterator ti = in_split[3].begin(); ti != in_split[3].end(); ti++) {
if (!isspace(*ti)) {
broken_grammar = false;
break;
}
}
if (broken_grammar) continue;
boost::replace_all(in_split[3], " __NEXT__RULE__ ", "\n"); // TODO
in_split[3] += "\n";
grammar_buf_out << in_split[3] << DTRAIN_GRAMMAR_DELIM << " " << in_split[0] << endl;
decoder.SetSentenceGrammarFromString(in_split[3]);
// decode
src_str_buf.push_back(in_split[1]);
decoder.Decode(in_split[1], observer);
} else {
// get buffered grammar
string grammar_str;
while (true) {
string rule;
getline(grammar_buf_in, rule);
if (boost::starts_with(rule, DTRAIN_GRAMMAR_DELIM)) break;
grammar_str += rule + "\n";
}
decoder.SetSentenceGrammarFromString(grammar_str);
// decode
decoder.Decode(src_str_buf[ii], observer);
}
vector<ScoredHyp>* samples = observer->GetSamples();
// (local) scoring
if (t > 0) ref_ids = ref_ids_buf[ii];
score_t score = 0.;
for (unsigned i = 0; i < samples->size(); i++) {
NgramCounts counts = make_ngram_counts(ref_ids, (*samples)[i].w, N);
if (scorer_str == "approx_bleu") {
unsigned hyp_len = 0;
if (i == 0) { // 'context of 1best translations'
global_counts += counts;
global_hyp_len += (*samples)[i].w.size();
global_ref_len += ref_ids.size();
counts.reset();
} else {
hyp_len = (*samples)[i].w.size();
}
NgramCounts _c = global_counts + counts;
score = .9 * scorer(_c,
global_ref_len,
global_hyp_len + hyp_len, N, bleu_weights);
} else {
score = scorer(counts,
ref_ids.size(),
(*samples)[i].w.size(), N, bleu_weights);
}
(*samples)[i].score = (score);
if (i == 0) {
score_sum += score;
model_sum += (*samples)[i].model;
}
if (verbose) {
if (i == 0) cerr << "'" << TD::GetString(ref_ids) << "' [ref]" << endl;
cerr << _p5 << _np << "[hyp " << i << "] " << "'" << TD::GetString((*samples)[i].w) << "'";
cerr << " [SCORE=" << score << ",model="<< (*samples)[i].model << "]" << endl;
cerr << (*samples)[i].f << endl;
}
} // sample/scoring loop
if (verbose) cerr << endl;
//////////////////////////////////////////////////////////
// UPDATE WEIGHTS
if (!noup) {
vector<pair<ScoredHyp,ScoredHyp> > pairs;
if (pair_sampling == "all")
sample_all_pairs(samples, pairs);
if (pair_sampling == "rand")
sample_rand_pairs(samples, pairs, &rng);
for (vector<pair<ScoredHyp,ScoredHyp> >::iterator ti = pairs.begin();
ti != pairs.end(); ti++) {
SparseVector<double> dv;
if (ti->first.score - ti->second.score < 0) {
dv = ti->second.f - ti->first.f;
//} else {
//dv = ti->first - ti->second;
//}
dv.add_value(FD::Convert("__bias"), -1);
//SparseVector<double> reg;
//reg = lambdas * (2 * gamma);
//dv -= reg;
lambdas += dv * eta;
if (verbose) {
/*cerr << "{{ f("<< ti->first_rank <<") > f(" << ti->second_rank << ") but g(i)="<< ti->first_score <<" < g(j)="<< ti->second_score << " so update" << endl;
cerr << " i " << TD::GetString(samples->sents[ti->first_rank]) << endl;
cerr << " " << samples->feats[ti->first_rank] << endl;
cerr << " j " << TD::GetString(samples->sents[ti->second_rank]) << endl;
cerr << " " << samples->feats[ti->second_rank] << endl;
cerr << " diff vec: " << dv << endl;
cerr << " lambdas after update: " << lambdas << endl;
cerr << "}}" << endl;*/
}
} else {
//SparseVector<double> reg;
//reg = lambdas * (2 * gamma);
//lambdas += reg * (-eta);
}
}
//double l2 = lambdas.l2norm();
//if (l2) lambdas /= lambdas.l2norm();
}
//////////////////////////////////////////////////////////
++ii;
if (hstreaming) cerr << "reporter:counter:dtrain,sid," << in_split[0] << endl;
} // input loop
if (t == 0) {
in_sz = ii; // remember size of input (# lines)
grammar_buf_out.close();
} else {
grammar_buf_in.close();
}
// print some stats
score_t score_avg = score_sum/(score_t)in_sz;
score_t model_avg = model_sum/(score_t)in_sz;
score_t score_diff, model_diff;
if (t > 0) {
score_diff = score_avg - all_scores[t-1].first;
model_diff = model_avg - all_scores[t-1].second;
} else {
score_diff = score_avg;
model_diff = model_avg;
}
if (!quiet) {
cerr << _p5 << _p << "WEIGHTS" << endl;
for (vector<string>::iterator it = print_weights.begin(); it != print_weights.end(); it++) {
cerr << setw(16) << *it << " = " << lambdas.get(FD::Convert(*it)) << endl;
}
cerr << " ---" << endl;
cerr << _np << " 1best avg score: " << score_avg;
cerr << _p << " (" << score_diff << ")" << endl;
cerr << _np << "1best avg model score: " << model_avg;
cerr << _p << " (" << model_diff << ")" << endl;
}
pair<score_t,score_t> remember;
remember.first = score_avg;
remember.second = model_avg;
all_scores.push_back(remember);
if (score_avg > max_score) {
max_score = score_avg;
best_it = t;
}
time (&end);
float time_diff = difftime(end, start);
overall_time += time_diff;
if (!quiet) {
cerr << _p2 << _np << "(time " << time_diff/60. << " min, ";
cerr << time_diff/(float)in_sz<< " s/S)" << endl;
}
if (t+1 != T && !quiet) cerr << endl;
if (noup) break;
} // outer loop
unlink(grammar_buf_fn);
if (!noup) {
if (!quiet) cerr << endl << "writing weights file '" << cfg["output"].as<string>() << "' ...";
if (cfg["output"].as<string>() == "-") {
cout << _p9;
for (SparseVector<double>::const_iterator ti = lambdas.begin();
ti != lambdas.end(); ++ti) {
if (ti->second == 0) continue;
cout << _np << FD::Convert(ti->first) << "\t" << ti->second << endl;
}
if (hstreaming) cout << "__SHARD_COUNT__\t1" << endl;
} else if (cfg["output"].as<string>() != "VOID") {
weights.InitFromVector(lambdas);
weights.WriteToFile(cfg["output"].as<string>(), true);
}
if (!quiet) cerr << "done" << endl;
}
if (!quiet) {
cerr << _p5 << _np << endl << "---" << endl << "Best iteration: ";
cerr << best_it+1 << " [SCORE '" << scorer_str << "'=" << max_score << "]." << endl;
cerr << _p2 << "This took " << overall_time/60. << " min." << endl;
}
return 0;
}
|