summaryrefslogtreecommitdiff
path: root/dtrain/dtrain.cc
blob: 76fdb49caf851eee81040cd3b0832d8696ff0303 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
#include "dtrain.h"


bool
dtrain_init(int argc, char** argv, po::variables_map* cfg)
{
  po::options_description conff("Configuration File Options");
  conff.add_options()
    ("decoder_config", po::value<string>(),                       "configuration file for cdec")
    ("kbest",          po::value<size_t>()->default_value(100),                   "k for kbest")
    ("ngrams",         po::value<size_t>()->default_value(3),                    "N for Ngrams")
    ("filter",         po::value<string>()->default_value("unique"),        "filter kbest list")
    ("epochs",         po::value<size_t>()->default_value(2),               "# of iterations T") 
    ("input",          po::value<string>()->default_value("-"),                    "input file")
    ("output",         po::value<string>()->default_value("-"),           "output weights file")
    ("scorer",         po::value<string>()->default_value("stupid_bleu"),      "scoring metric")
    ("stop_after",     po::value<size_t>()->default_value(0),    "stop after X input sentences")
    ("input_weights",  po::value<string>(), "input weights file (e.g. from previous iteration)")
    ("wprint",         po::value<string>(),                "weights to print on each iteration")
    ("hstreaming",     po::value<bool>()->zero_tokens(),         "run in hadoop streaming mode")
    ("noup",           po::value<bool>()->zero_tokens(),                "do not update weights");

  po::options_description clo("Command Line Options");
  clo.add_options()
    ("config,c",         po::value<string>(),              "dtrain config file")
    ("quiet,q",          po::value<bool>()->zero_tokens(),           "be quiet")
    ("verbose,v",        po::value<bool>()->zero_tokens(),         "be verbose");
  po::options_description config_options, cmdline_options;

  config_options.add(conff);
  cmdline_options.add(clo);
  cmdline_options.add(conff);

  po::store(parse_command_line(argc, argv, cmdline_options), *cfg);
  if (cfg->count("config")) {
    ifstream config((*cfg)["config"].as<string>().c_str());
    po::store(po::parse_config_file(config, config_options), *cfg);
  }
  po::notify(*cfg);

  if (!cfg->count("decoder_config")) { 
    cerr << cmdline_options << endl;
    return false;
  }
  if (cfg->count("hstreaming") && (*cfg)["output"].as<string>() != "-") {
    cerr << "When using 'hstreaming' the 'output' param should be '-'.";
    return false;
  }
  if (cfg->count("filter") && (*cfg)["filter"].as<string>() != "unique"
       && (*cfg)["filter"].as<string>() != "no") {
    cerr << "Wrong 'filter' type: '" << (*cfg)["filter"].as<string>() << "'." << endl;
  }
  return true;
}

#include "filelib.h"

int
main(int argc, char** argv)
{
  cout << _p5;
  // handle most parameters
  po::variables_map cfg;
  if (! dtrain_init(argc, argv, &cfg)) exit(1); // something is wrong 
  bool quiet = false;
  if (cfg.count("quiet")) quiet = true;
  bool verbose = false;  
  if (cfg.count("verbose")) verbose = true;
  bool noup = false;
  if (cfg.count("noup")) noup = true;
  bool hstreaming = false;
  if (cfg.count("hstreaming")) {
    hstreaming = true;
    quiet = true;
  }
  const size_t k = cfg["kbest"].as<size_t>();
  const size_t N = cfg["ngrams"].as<size_t>(); 
  const size_t T = cfg["epochs"].as<size_t>();
  const size_t stop_after = cfg["stop_after"].as<size_t>();
  const string filter_type = cfg["filter"].as<string>();
  if (!quiet) {
    cout << endl << "dtrain" << endl << "Parameters:" << endl;
    cout << setw(25) << "k " << k << endl;
    cout << setw(25) << "N " << N << endl;
    cout << setw(25) << "T " << T << endl;
    if (cfg.count("stop-after"))
      cout << setw(25) << "stop_after " << stop_after << endl;
    if (cfg.count("input_weights"))
      cout << setw(25) << "weights " << cfg["weights"].as<string>() << endl;
    cout << setw(25) << "input " << "'" << cfg["input"].as<string>() << "'" << endl;
    cout << setw(25) << "filter " << "'" << filter_type << "'" << endl;
  }

  vector<string> wprint;
  if (cfg.count("wprint")) {
    boost::split(wprint, cfg["wprint"].as<string>(), boost::is_any_of(" "));
  }

  // setup decoder, observer
  register_feature_functions();
  SetSilent(true);
  ReadFile ini_rf(cfg["decoder_config"].as<string>());
  if (!quiet)
    cout << setw(25) << "cdec cfg " << "'" << cfg["decoder_config"].as<string>() << "'" << endl;
  Decoder decoder(ini_rf.stream());
  KBestGetter observer(k, filter_type);
  MT19937 rng;
  //KSampler observer(k, &rng);

  // scoring metric/scorer
  string scorer_str = cfg["scorer"].as<string>();
  double (*scorer)(NgramCounts&, const size_t, const size_t, size_t, vector<float>);
  if (scorer_str == "bleu") {
    scorer = &bleu;
  } else if (scorer_str == "stupid_bleu") {
    scorer = &stupid_bleu;
  } else if (scorer_str == "smooth_bleu") {
    scorer = &smooth_bleu;
  } else if (scorer_str == "approx_bleu") {
    scorer = &approx_bleu;
  } else {
    cerr << "Don't know scoring metric: '" << scorer_str << "', exiting." << endl;
    exit(1);
  }
  // for approx_bleu
  NgramCounts global_counts(N); // counts for 1 best translations
  size_t global_hyp_len = 0;      // sum hypothesis lengths
  size_t global_ref_len = 0;      // sum reference lengths
  // this is all BLEU implmentations
  vector<float> bleu_weights; // we leave this empty -> 1/N; TODO? 
  if (!quiet) cout << setw(26) << "scorer '" << scorer_str << "'" << endl << endl;

  // init weights
  Weights weights;
  if (cfg.count("weights")) weights.InitFromFile(cfg["weights"].as<string>());
  SparseVector<double> lambdas;
  weights.InitSparseVector(&lambdas);
  vector<double> dense_weights;

  // input
  if (!quiet && !verbose)
    cout << "(a dot represents " << DTRAIN_DOTS << " lines of input)" << endl;
  string input_fn = cfg["input"].as<string>();
  ifstream input;
  if (input_fn != "-") input.open(input_fn.c_str());
  string in;
  vector<string> in_split; // input: src\tref\tpsg
  vector<string> ref_tok;  // tokenized reference
  vector<WordID> ref_ids;  // reference as vector of WordID

  // buffer input for t > 0
  vector<string> src_str_buf;           // source strings, TODO? memory
  vector<vector<WordID> > ref_ids_buf;  // references as WordID vecs
  // this is for writing the grammar buffer file
  char grammar_buf_fn[] = DTRAIN_TMP_DIR"/dtrain-grammars-XXXXXX";
  mkstemp(grammar_buf_fn);
  ogzstream grammar_buf_out;
  grammar_buf_out.open(grammar_buf_fn);
  
  size_t sid = 0, in_sz = 99999999; // sentence id, input size
  double acc_1best_score = 0., acc_1best_model = 0.;
  vector<vector<double> > scores_per_iter;
  double max_score = 0.;
  size_t best_t = 0;
  bool next = false, stop = false;
  double score = 0.;
  size_t cand_len = 0;
  double overall_time = 0.;

  // for the perceptron/SVM; TODO as params
  double eta = 0.0005;
  double gamma = 0.;//01; // -> SVM
  lambdas.add_value(FD::Convert("__bias"), 0);
  
  // for random sampling
  srand (time(NULL));


  for (size_t t = 0; t < T; t++) // T epochs
  {

  time_t start, end;  
  time(&start);

  // actually, we need only need this if t > 0 FIXME
  igzstream grammar_buf_in;
  if (t > 0) grammar_buf_in.open(grammar_buf_fn);

  // reset average scores
  acc_1best_score = acc_1best_model = 0.;
  
  // reset sentence counter
  sid = 0;
  
  if (!quiet) cout << "Iteration #" << t+1 << " of " << T << "." << endl;
  
  while(true)
  {

    // get input from stdin or file
    in.clear();
    next = stop = false; // next iteration, premature stop
    if (t == 0) {    
      if (input_fn == "-") {
        if (!getline(cin, in)) next = true;
      } else {
        if (!getline(input, in)) next = true; 
      }
    } else {
      if (sid == in_sz) next = true; // stop if we reach the end of our input
    }
    // stop after X sentences (but still iterate for those)
    if (stop_after > 0 && stop_after == sid && !next) stop = true;
    
    // produce some pretty output
    if (!quiet && !verbose) {
        if (sid == 0) cout << " ";
        if ((sid+1) % (DTRAIN_DOTS) == 0) {
            cout << ".";
            cout.flush();
        }
        if ((sid+1) % (20*DTRAIN_DOTS) == 0) {
            cout << " " << sid+1 << endl;
            if (!next && !stop) cout << " ";
        }
        if (stop) {
          if (sid % (20*DTRAIN_DOTS) != 0) cout << " " << sid << endl;
          cout << "Stopping after " << stop_after << " input sentences." << endl;
        } else {
          if (next) {
            if (sid % (20*DTRAIN_DOTS) != 0) {
              cout << " " << sid << endl;
            }
          }
        }
    }
    
    // next iteration
    if (next || stop) break;

    // weights
    dense_weights.clear();
    weights.InitFromVector(lambdas);
    weights.InitVector(&dense_weights);
    decoder.SetWeights(dense_weights);

    if (t == 0) {
      // handling input
      in_split.clear();
      strsplit(in, in_split, '\t', 4);
      // getting reference
      ref_tok.clear(); ref_ids.clear();
      strsplit(in_split[2], ref_tok, ' ');
      register_and_convert(ref_tok, ref_ids);
      ref_ids_buf.push_back(ref_ids);
      // process and set grammar
      bool broken_grammar = true;
      for (string::iterator ti = in_split[3].begin(); ti != in_split[3].end(); ti++) {
        if (!isspace(*ti)) {
          broken_grammar = false;
          break;
        }
      }
      if (broken_grammar) continue;
      boost::replace_all(in_split[3], " __NEXT__RULE__ ", "\n");
      in_split[3] += "\n";
      grammar_buf_out << in_split[3] << DTRAIN_GRAMMAR_DELIM << " " << in_split[0] << endl;
      decoder.SetSentenceGrammarFromString(in_split[3]);
      // decode
      src_str_buf.push_back(in_split[1]);
      decoder.Decode(in_split[1], &observer);
    } else {
      // get buffered grammar
      string grammar_str;
      while (true) {
        string rule;  
        getline(grammar_buf_in, rule);
        if (boost::starts_with(rule, DTRAIN_GRAMMAR_DELIM)) break;
        grammar_str += rule + "\n";
      }
      decoder.SetSentenceGrammarFromString(grammar_str);
      // decode
      decoder.Decode(src_str_buf[sid], &observer);
    }

    // get kbest list
    KBestList* kb;
    //if () { // TODO get from forest
      kb = observer.GetKBest();
    //}

    // (local) scoring
    if (t > 0) ref_ids = ref_ids_buf[sid];
    for (size_t i = 0; i < kb->GetSize(); i++) {
      NgramCounts counts = make_ngram_counts(ref_ids, kb->sents[i], N);
      if (scorer_str == "approx_bleu") {
        if (i == 0) { // 'context of 1best translations'
          global_counts  += counts;
          global_hyp_len += kb->sents[i].size();
          global_ref_len += ref_ids.size();
          counts.reset();
          cand_len = 0;
        } else {
            cand_len = kb->sents[i].size();
        }
        NgramCounts counts_tmp = global_counts + counts;
        score = .9*scorer(counts_tmp,
                        global_ref_len,
                        global_hyp_len + cand_len, N, bleu_weights);
      } else {
        cand_len = kb->sents[i].size();
        score = scorer(counts,
                        ref_ids.size(),
                        kb->sents[i].size(), N, bleu_weights);
      }

      kb->scores.push_back(score);

      if (i == 0) {
        acc_1best_score += score;
        acc_1best_model += kb->model_scores[i];
      }

      if (verbose) {
        if (i == 0) cout << "'" << TD::GetString(ref_ids) << "' [ref]" << endl;
        cout << _p5 << _np << "[hyp " << i << "] " << "'" << TD::GetString(kb->sents[i]) << "'";
        cout << " [SCORE=" << score << ",model="<< kb->model_scores[i] << "]" << endl;
        //cout << kb->feats[i] << endl; // too verbose
      }
    } // Nbest loop

    if (verbose) cout << endl;

//////////////////////////////////////////////////////////
    // UPDATE WEIGHTS
    if (!noup) {

      int up = 0;

      TrainingInstances pairs;
      sample_all_pairs(kb, pairs);
      //sample_rand_pairs(kb, pairs, &rng);
       
      for (TrainingInstances::iterator ti = pairs.begin();
            ti != pairs.end(); ti++) {

        SparseVector<double> dv;
        if (ti->first_score - ti->second_score < 0) {
            up++;
          dv = ti->second - ti->first;
      //} else {
        //dv = ti->first - ti->second;
      //}
          dv.add_value(FD::Convert("__bias"), -1);
        
          //SparseVector<double> reg;
          //reg = lambdas * (2 * gamma);
          //dv -= reg;
          lambdas += dv * eta;

          if (verbose) {
            cout << "{{ f("<< ti->first_rank <<") > f(" << ti->second_rank << ") but g(i)="<< ti->first_score <<" < g(j)="<< ti->second_score << " so update" << endl;
            cout << " i  " << TD::GetString(kb->sents[ti->first_rank]) << endl;
            cout << "    " << kb->feats[ti->first_rank] << endl;
            cout << " j  " << TD::GetString(kb->sents[ti->second_rank]) << endl;
            cout << "    " << kb->feats[ti->second_rank] << endl; 
            cout << " diff vec: " << dv << endl;
            cout << " lambdas after update: " << lambdas << endl;
            cout << "}}" << endl;
          }
        } else {
          //SparseVector<double> reg;
          //reg = lambdas * (2 * gamma);
          //lambdas += reg * (-eta);
        }

      }

      //double l2 = lambdas.l2norm();
      //if (l2) lambdas /= lambdas.l2norm();
      //cout << up << endl;
    }
//////////////////////////////////////////////////////////

    ++sid;

    if (hstreaming) cerr << "reporter:counter:dtrain,sid," << sid << endl;

  } // input loop

  if (t == 0) {
    in_sz = sid; // remember size (lines) of input
    grammar_buf_out.close();
    if (input_fn != "-") input.close();
  } else {
    grammar_buf_in.close();
  }

  // print some stats
  double avg_1best_score = acc_1best_score/(double)in_sz;
  double avg_1best_model = acc_1best_model/(double)in_sz;
  double avg_1best_score_diff, avg_1best_model_diff;
  if (t > 0) {
    avg_1best_score_diff = avg_1best_score - scores_per_iter[t-1][0];
    avg_1best_model_diff = avg_1best_model - scores_per_iter[t-1][1];
  } else {
    avg_1best_score_diff = avg_1best_score;
    avg_1best_model_diff = avg_1best_model;
  }
  if (!quiet) {
  cout << _p5 << _p << "WEIGHTS" << endl;
  for (vector<string>::iterator it = wprint.begin(); it != wprint.end(); it++) {
    cout << setw(16) << *it << " = " << dense_weights[FD::Convert(*it)] << endl;
  }
  cout << "        ---" << endl;
  cout << _np << "      avg score: " << avg_1best_score;
  cout << _p << " (" << avg_1best_score_diff << ")" << endl;
  cout << _np << "avg model score: " << avg_1best_model;
  cout << _p << " (" << avg_1best_model_diff << ")" << endl;
  }
  vector<double> remember_scores;
  remember_scores.push_back(avg_1best_score);
  remember_scores.push_back(avg_1best_model);
  scores_per_iter.push_back(remember_scores);
  if (avg_1best_score > max_score) {
    max_score = avg_1best_score;
    best_t = t;
  }
  time (&end);
  double time_dif = difftime(end, start);
  overall_time += time_dif;
  if (!quiet) {
    cout << _p2 << _np << "(time " << time_dif/60. << " min, ";
    cout << time_dif/(double)in_sz<< " s/S)" << endl;
  }
  
  if (t+1 != T && !quiet) cout << endl;

  if (noup) break;

  } // outer loop

  //unlink(grammar_buf_fn);

  if (!noup) {
    if (!quiet) cout << endl << "writing weights file '" << cfg["output"].as<string>() << "' ...";
    if (cfg["output"].as<string>() == "-") {
      for (SparseVector<double>::const_iterator ti = lambdas.begin();
            ti != lambdas.end(); ++ti) {
	if (ti->second == 0) continue;
        cout << _p9;
        cout << _np << FD::Convert(ti->first) << "\t" << ti->second << endl;
      }
      if (hstreaming) cout << "__SHARD_COUNT__\t1" << endl;
    } else {
      weights.InitFromVector(lambdas);
      weights.WriteToFile(cfg["output"].as<string>(), true);
    }
    if (!quiet) cout << "done" << endl;
  }
  
  if (!quiet) {
    cout << _p5 << _np << endl << "---" << endl << "Best iteration: ";
    cout << best_t+1 << " [SCORE '" << scorer_str << "'=" << max_score << "]." << endl;
    cout << _p2 << "This took " << overall_time/60. << " min." << endl;
  }

  return 0;
}