blob: 66168b6a167831891687ca837b5820f5b965988e (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
dtrain
======
IDEAS
-----
* MULTIPARTITE ranking (108010, 1 vs all, cluster modelscore;score)
* what about RESCORING?
* REMEMBER kbest (merge) weights?
* SELECT iteration with highest (real) BLEU?
* GENERATED data? (multi-task, ability to learn, perfect translation in nbest, at first all modelscore 1)
* CACHING (ngrams for scoring)
* hadoop PIPES imlementation
* SHARED LM (kenlm actually does this!)?
* ITERATION variants
* once -> average
* shuffle resulting weights
* weights AVERAGING in reducer (global Ngram counts)
* BATCH implementation (no update after each Kbest list)
* set REFERENCE for cdec (rescoring)?
* MORE THAN ONE reference for BLEU?
* kbest NICER (do not iterate twice)!? -> shared_ptr?
* DO NOT USE Decoder::Decode (input caching as WordID)!?
* sparse vector instead of vector<double> for weights in Decoder(::SetWeights)?
* reactivate DTEST and tests
* non deterministic, high variance, RANDOM RESTARTS
* use separate TEST SET
Uncertain, known bugs, problems
-------------------------------
* cdec kbest vs 1best (no -k param), rescoring? => ok(?)
* no sparse vector in decoder => ok/fixed
* PhraseModel_* features (0..99 seem to be generated, why 99?)
* flex scanner jams on malicious input, we could skip that
FIXME
-----
* merge with cdec master
Data
====
<pre>
nc-v6.de-en peg
nc-v6.de-en.loo peg
nc-v6.de-en.giza.loo peg
nc-v6.de-en.symgiza.loo pe
nv-v6.de-en.cs pe
nc-v6.de-en.cs.loo pe
--
ep-v6.de-en.cs p
ep-v6.de-en.cs.loo p
</pre>
|