summaryrefslogtreecommitdiff
path: root/dpmert/mert_geometry.cc
blob: d697365869f7c331765b7c595fce21b2b1fa4c34 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#include "mert_geometry.h"

#include <cassert>
#include <limits>

using namespace std;

ConvexHull::ConvexHull(int i) {
  if (i == 0) {
    // do nothing - <>
  } else if (i == 1) {
    points.push_back(boost::shared_ptr<MERTPoint>(new MERTPoint(0, 0, 0, boost::shared_ptr<MERTPoint>(), boost::shared_ptr<MERTPoint>())));
    assert(this->IsMultiplicativeIdentity());
  } else {
    cerr << "Only can create ConvexHull semiring 0 and 1 with this constructor!\n";
    abort();
  }
}

const ConvexHull ConvexHullWeightFunction::operator()(const Hypergraph::Edge& e) const {
  const double m = direction.dot(e.feature_values_);
  const double b = origin.dot(e.feature_values_);
  MERTPoint* point = new MERTPoint(m, b, e);
  return ConvexHull(1, point);
}

ostream& operator<<(ostream& os, const ConvexHull& env) {
  os << '<';
  const vector<boost::shared_ptr<MERTPoint> >& points = env.GetSortedSegs();
  for (int i = 0; i < points.size(); ++i)
    os << (i==0 ? "" : "|") << "x=" << points[i]->x << ",b=" << points[i]->b << ",m=" << points[i]->m << ",p1=" << points[i]->p1 << ",p2=" << points[i]->p2;
  return os << '>';
}

#define ORIGINAL_MERT_IMPLEMENTATION 1
#ifdef ORIGINAL_MERT_IMPLEMENTATION

struct SlopeCompare {
  bool operator() (const boost::shared_ptr<MERTPoint>& a, const boost::shared_ptr<MERTPoint>& b) const {
    return a->m < b->m;
  }
};

const ConvexHull& ConvexHull::operator+=(const ConvexHull& other) {
  if (!other.is_sorted) other.Sort();
  if (points.empty()) {
    points = other.points;
    return *this;
  }
  is_sorted = false;
  int j = points.size();
  points.resize(points.size() + other.points.size());
  for (int i = 0; i < other.points.size(); ++i)
    points[j++] = other.points[i];
  assert(j == points.size());
  return *this;
}

void ConvexHull::Sort() const {
  sort(points.begin(), points.end(), SlopeCompare());
  const int k = points.size();
  int j = 0;
  for (int i = 0; i < k; ++i) {
    MERTPoint l = *points[i];
    l.x = kMinusInfinity;
    // cerr << "m=" << l.m << endl;
    if (0 < j) {
      if (points[j-1]->m == l.m) {   // lines are parallel
        if (l.b <= points[j-1]->b) continue;
        --j;
      }
      while(0 < j) {
        l.x = (l.b - points[j-1]->b) / (points[j-1]->m - l.m);
        if (points[j-1]->x < l.x) break;
        --j;
      }
      if (0 == j) l.x = kMinusInfinity;
    }
    *points[j++] = l;
  }
  points.resize(j);
  is_sorted = true;
}

const ConvexHull& ConvexHull::operator*=(const ConvexHull& other) {
  if (other.IsMultiplicativeIdentity()) { return *this; }
  if (this->IsMultiplicativeIdentity()) { (*this) = other; return *this; }

  if (!is_sorted) Sort();
  if (!other.is_sorted) other.Sort();

  if (this->IsEdgeEnvelope()) {
//    if (other.size() > 1)
//      cerr << *this << " (TIMES) " << other << endl;
    boost::shared_ptr<MERTPoint> edge_parent = points[0];
    const double& edge_b = edge_parent->b;
    const double& edge_m = edge_parent->m;
    points.clear();
    for (int i = 0; i < other.points.size(); ++i) {
      const MERTPoint& p = *other.points[i];
      const double m = p.m + edge_m;
      const double b = p.b + edge_b;
      const double& x = p.x;       // x's don't change with *
      points.push_back(boost::shared_ptr<MERTPoint>(new MERTPoint(x, m, b, edge_parent, other.points[i])));
      assert(points.back()->p1->edge);
    }
//    if (other.size() > 1)
//      cerr << " = " << *this << endl;
  } else {
    vector<boost::shared_ptr<MERTPoint> > new_points;
    int this_i = 0;
    int other_i = 0;
    const int this_size  = points.size();
    const int other_size = other.points.size();
    double cur_x = kMinusInfinity;   // moves from left to right across the
                                     // real numbers, stopping for all inter-
                                     // sections
    double this_next_val  = (1 < this_size  ? points[1]->x       : kPlusInfinity);
    double other_next_val = (1 < other_size ? other.points[1]->x : kPlusInfinity);
    while (this_i < this_size && other_i < other_size) {
      const MERTPoint& this_point = *points[this_i];
      const MERTPoint& other_point= *other.points[other_i];
      const double m = this_point.m + other_point.m;
      const double b = this_point.b + other_point.b;
 
      new_points.push_back(boost::shared_ptr<MERTPoint>(new MERTPoint(cur_x, m, b, points[this_i], other.points[other_i])));
      int comp = 0;
      if (this_next_val < other_next_val) comp = -1; else
        if (this_next_val > other_next_val) comp = 1;
      if (0 == comp) {  // the next values are equal, advance both indices
        ++this_i;
	++other_i;
        cur_x = this_next_val;  // could be other_next_val (they're equal!)
        this_next_val  = (this_i+1  < this_size  ? points[this_i+1]->x        : kPlusInfinity);
        other_next_val = (other_i+1 < other_size ? other.points[other_i+1]->x : kPlusInfinity);
      } else {  // advance the i with the lower x, update cur_x
        if (-1 == comp) {
          ++this_i;
          cur_x = this_next_val;
          this_next_val =  (this_i+1  < this_size  ? points[this_i+1]->x        : kPlusInfinity);
        } else {
          ++other_i;
          cur_x = other_next_val;
          other_next_val = (other_i+1 < other_size ? other.points[other_i+1]->x : kPlusInfinity);
        }
      }
    }
    points.swap(new_points);
  }
  //cerr << "Multiply: result=" << (*this) << endl;
  return *this;
}

// recursively construct translation
void MERTPoint::ConstructTranslation(vector<WordID>* trans) const {
  const MERTPoint* cur = this;
  vector<vector<WordID> > ant_trans;
  while(!cur->edge) {
    ant_trans.resize(ant_trans.size() + 1);
    cur->p2->ConstructTranslation(&ant_trans.back());
    cur = cur->p1.get();
  }
  size_t ant_size = ant_trans.size();
  vector<const vector<WordID>*> pants(ant_size);
  assert(ant_size == cur->edge->tail_nodes_.size());
  --ant_size;
  for (int i = 0; i < pants.size(); ++i) pants[ant_size - i] = &ant_trans[i];
  cur->edge->rule_->ESubstitute(pants, trans);
}

void MERTPoint::CollectEdgesUsed(std::vector<bool>* edges_used) const {
  if (edge) {
    assert(edge->id_ < edges_used->size());
    (*edges_used)[edge->id_] = true;
  }
  if (p1) p1->CollectEdgesUsed(edges_used);
  if (p2) p2->CollectEdgesUsed(edges_used);
}

#else

// THIS IS THE NEW FASTER IMPLEMENTATION OF THE MERT SEMIRING OPERATIONS

#endif