1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
|
#define BOOST_TEST_MODULE LineOptimizerTest
#include <boost/test/unit_test.hpp>
#include <boost/test/floating_point_comparison.hpp>
#include <cmath>
#include <iostream>
#include <fstream>
#include <boost/shared_ptr.hpp>
#include "ns.h"
#include "ns_docscorer.h"
#include "ces.h"
#include "fdict.h"
#include "hg.h"
#include "kbest.h"
#include "hg_io.h"
#include "filelib.h"
#include "inside_outside.h"
#include "viterbi.h"
#include "mert_geometry.h"
#include "line_optimizer.h"
using namespace std;
const char* ref11 = "australia reopens embassy in manila";
const char* ref12 = "( afp , manila , january 2 ) australia reopened its embassy in the philippines today , which was shut down about seven weeks ago due to what was described as a specific threat of a terrorist attack .";
const char* ref21 = "australia reopened manila embassy";
const char* ref22 = "( agence france-presse , manila , 2nd ) - australia reopened its embassy in the philippines today . the embassy was closed seven weeks ago after what was described as a specific threat of a terrorist attack .";
const char* ref31 = "australia to reopen embassy in manila";
const char* ref32 = "( afp report from manila , january 2 ) australia reopened its embassy in the philippines today . seven weeks ago , the embassy was shut down due to so - called confirmed terrorist attack threats .";
const char* ref41 = "australia to re - open its embassy to manila";
const char* ref42 = "( afp , manila , thursday ) australia reopens its embassy to manila , which was closed for the so - called \" clear \" threat of terrorist attack 7 weeks ago .";
BOOST_AUTO_TEST_CASE( TestCheckNaN) {
double x = 0;
double y = 0;
double z = x / y;
BOOST_CHECK_EQUAL(true, isnan(z));
}
BOOST_AUTO_TEST_CASE(TestConvexHull) {
boost::shared_ptr<MERTPoint> a1(new MERTPoint(-1, 0));
boost::shared_ptr<MERTPoint> b1(new MERTPoint(1, 0));
boost::shared_ptr<MERTPoint> a2(new MERTPoint(-1, 1));
boost::shared_ptr<MERTPoint> b2(new MERTPoint(1, -1));
vector<boost::shared_ptr<MERTPoint> > sa; sa.push_back(a1); sa.push_back(b1);
vector<boost::shared_ptr<MERTPoint> > sb; sb.push_back(a2); sb.push_back(b2);
ConvexHull a(sa);
cerr << a << endl;
ConvexHull b(sb);
ConvexHull c = a;
c *= b;
cerr << a << " (*) " << b << " = " << c << endl;
BOOST_CHECK_EQUAL(3, c.size());
}
BOOST_AUTO_TEST_CASE(TestConvexHullInside) {
const string json = "{\"rules\":[1,\"[X] ||| a\",2,\"[X] ||| A [1]\",3,\"[X] ||| c\",4,\"[X] ||| C [1]\",5,\"[X] ||| [1] B [2]\",6,\"[X] ||| [1] b [2]\",7,\"[X] ||| X [1]\",8,\"[X] ||| Z [1]\"],\"features\":[\"f1\",\"f2\",\"Feature_1\",\"Feature_0\",\"Model_0\",\"Model_1\",\"Model_2\",\"Model_3\",\"Model_4\",\"Model_5\",\"Model_6\",\"Model_7\"],\"edges\":[{\"tail\":[],\"feats\":[],\"rule\":1}],\"node\":{\"in_edges\":[0]},\"edges\":[{\"tail\":[0],\"feats\":[0,-0.8,1,-0.1],\"rule\":2}],\"node\":{\"in_edges\":[1]},\"edges\":[{\"tail\":[],\"feats\":[1,-1],\"rule\":3}],\"node\":{\"in_edges\":[2]},\"edges\":[{\"tail\":[2],\"feats\":[0,-0.2,1,-0.1],\"rule\":4}],\"node\":{\"in_edges\":[3]},\"edges\":[{\"tail\":[1,3],\"feats\":[0,-1.2,1,-0.2],\"rule\":5},{\"tail\":[1,3],\"feats\":[0,-0.5,1,-1.3],\"rule\":6}],\"node\":{\"in_edges\":[4,5]},\"edges\":[{\"tail\":[4],\"feats\":[0,-0.5,1,-0.8],\"rule\":7},{\"tail\":[4],\"feats\":[0,-0.7,1,-0.9],\"rule\":8}],\"node\":{\"in_edges\":[6,7]}}";
Hypergraph hg;
istringstream instr(json);
HypergraphIO::ReadFromJSON(&instr, &hg);
SparseVector<double> wts;
wts.set_value(FD::Convert("f1"), 0.4);
wts.set_value(FD::Convert("f2"), 1.0);
hg.Reweight(wts);
vector<pair<vector<WordID>, prob_t> > list;
std::vector<SparseVector<double> > features;
KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(hg, 10);
for (int i = 0; i < 10; ++i) {
const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d =
kbest.LazyKthBest(hg.nodes_.size() - 1, i);
if (!d) break;
cerr << log(d->score) << " ||| " << TD::GetString(d->yield) << " ||| " << d->feature_values << endl;
}
SparseVector<double> dir; dir.set_value(FD::Convert("f1"), 1.0);
ConvexHullWeightFunction wf(wts, dir);
ConvexHull env = Inside<ConvexHull, ConvexHullWeightFunction>(hg, NULL, wf);
cerr << env << endl;
const vector<boost::shared_ptr<MERTPoint> >& segs = env.GetSortedSegs();
dir *= segs[1]->x;
wts += dir;
hg.Reweight(wts);
KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest2(hg, 10);
for (int i = 0; i < 10; ++i) {
const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d =
kbest2.LazyKthBest(hg.nodes_.size() - 1, i);
if (!d) break;
cerr << log(d->score) << " ||| " << TD::GetString(d->yield) << " ||| " << d->feature_values << endl;
}
for (int i = 0; i < segs.size(); ++i) {
cerr << "seg=" << i << endl;
vector<WordID> trans;
segs[i]->ConstructTranslation(&trans);
cerr << TD::GetString(trans) << endl;
}
}
BOOST_AUTO_TEST_CASE( TestS1) {
int fPhraseModel_0 = FD::Convert("PhraseModel_0");
int fPhraseModel_1 = FD::Convert("PhraseModel_1");
int fPhraseModel_2 = FD::Convert("PhraseModel_2");
int fLanguageModel = FD::Convert("LanguageModel");
int fWordPenalty = FD::Convert("WordPenalty");
int fPassThrough = FD::Convert("PassThrough");
SparseVector<double> wts;
wts.set_value(fWordPenalty, 4.25);
wts.set_value(fLanguageModel, -1.1165);
wts.set_value(fPhraseModel_0, -0.96);
wts.set_value(fPhraseModel_1, -0.65);
wts.set_value(fPhraseModel_2, -0.77);
wts.set_value(fPassThrough, -10.0);
vector<int> to_optimize;
to_optimize.push_back(fWordPenalty);
to_optimize.push_back(fLanguageModel);
to_optimize.push_back(fPhraseModel_0);
to_optimize.push_back(fPhraseModel_1);
to_optimize.push_back(fPhraseModel_2);
Hypergraph hg;
ReadFile rf("./test_data/0.json.gz");
HypergraphIO::ReadFromJSON(rf.stream(), &hg);
hg.Reweight(wts);
Hypergraph hg2;
ReadFile rf2("./test_data/1.json.gz");
HypergraphIO::ReadFromJSON(rf2.stream(), &hg2);
hg2.Reweight(wts);
vector<vector<WordID> > refs1(4);
TD::ConvertSentence(ref11, &refs1[0]);
TD::ConvertSentence(ref21, &refs1[1]);
TD::ConvertSentence(ref31, &refs1[2]);
TD::ConvertSentence(ref41, &refs1[3]);
vector<vector<WordID> > refs2(4);
TD::ConvertSentence(ref12, &refs2[0]);
TD::ConvertSentence(ref22, &refs2[1]);
TD::ConvertSentence(ref32, &refs2[2]);
TD::ConvertSentence(ref42, &refs2[3]);
vector<ConvexHull> envs(2);
RandomNumberGenerator<boost::mt19937> rng;
vector<SparseVector<double> > axes; // directions to search
LineOptimizer::CreateOptimizationDirections(
to_optimize,
10,
&rng,
&axes);
assert(axes.size() == 10 + to_optimize.size());
for (int i = 0; i < axes.size(); ++i)
cerr << axes[i] << endl;
const SparseVector<double>& axis = axes[0];
cerr << "Computing Viterbi envelope using inside algorithm...\n";
cerr << "axis: " << axis << endl;
clock_t t_start=clock();
ConvexHullWeightFunction wf(wts, axis); // wts = starting point, axis = search direction
envs[0] = Inside<ConvexHull, ConvexHullWeightFunction>(hg, NULL, wf);
envs[1] = Inside<ConvexHull, ConvexHullWeightFunction>(hg2, NULL, wf);
vector<ErrorSurface> es(2);
EvaluationMetric* metric = EvaluationMetric::Instance("IBM_BLEU");
boost::shared_ptr<SegmentEvaluator> scorer1 = metric->CreateSegmentEvaluator(refs1);
boost::shared_ptr<SegmentEvaluator> scorer2 = metric->CreateSegmentEvaluator(refs2);
ComputeErrorSurface(*scorer1, envs[0], &es[0], metric, hg);
ComputeErrorSurface(*scorer2, envs[1], &es[1], metric, hg2);
cerr << envs[0].size() << " " << envs[1].size() << endl;
cerr << es[0].size() << " " << es[1].size() << endl;
envs.clear();
clock_t t_env=clock();
float score;
double m = LineOptimizer::LineOptimize(metric,es, LineOptimizer::MAXIMIZE_SCORE, &score);
clock_t t_opt=clock();
cerr << "line optimizer returned: " << m << " (SCORE=" << score << ")\n";
BOOST_CHECK_CLOSE(0.48719698, score, 1e-5);
SparseVector<double> res = axis;
res *= m;
res += wts;
cerr << "res: " << res << endl;
cerr << "ENVELOPE PROCESSING=" << (static_cast<double>(t_env - t_start) / 1000.0) << endl;
cerr << " LINE OPTIMIZATION=" << (static_cast<double>(t_opt - t_env) / 1000.0) << endl;
hg.Reweight(res);
hg2.Reweight(res);
vector<WordID> t1,t2;
ViterbiESentence(hg, &t1);
ViterbiESentence(hg2, &t2);
cerr << TD::GetString(t1) << endl;
cerr << TD::GetString(t2) << endl;
}
BOOST_AUTO_TEST_CASE(TestZeroOrigin) {
const string json = "{\"rules\":[1,\"[X7] ||| blA ||| without ||| LHSProb=3.92173 LexE2F=2.90799 LexF2E=1.85003 GenerativeProb=10.5381 RulePenalty=1 XFE=2.77259 XEF=0.441833 LabelledEF=2.63906 LabelledFE=4.96981 LogRuleCount=0.693147\",2,\"[X7] ||| blA ||| except ||| LHSProb=4.92173 LexE2F=3.90799 LexF2E=1.85003 GenerativeProb=11.5381 RulePenalty=1 XFE=2.77259 XEF=1.44183 LabelledEF=2.63906 LabelledFE=4.96981 LogRuleCount=1.69315\",3,\"[S] ||| [X7,1] ||| [1] ||| GlueTop=1\",4,\"[X28] ||| EnwAn ||| title ||| LHSProb=3.96802 LexE2F=2.22462 LexF2E=1.83258 GenerativeProb=10.0863 RulePenalty=1 XFE=0 XEF=1.20397 LabelledEF=1.20397 LabelledFE=-1.98341e-08 LogRuleCount=1.09861\",5,\"[X0] ||| EnwAn ||| funny ||| LHSProb=3.98479 LexE2F=1.79176 LexF2E=3.21888 GenerativeProb=11.1681 RulePenalty=1 XFE=0 XEF=2.30259 LabelledEF=2.30259 LabelledFE=0 LogRuleCount=0 SingletonRule=1\",6,\"[X8] ||| [X7,1] EnwAn ||| entitled [1] ||| LHSProb=3.82533 LexE2F=3.21888 LexF2E=2.52573 GenerativeProb=11.3276 RulePenalty=1 XFE=1.20397 XEF=1.20397 LabelledEF=2.30259 LabelledFE=2.30259 LogRuleCount=0 SingletonRule=1\",7,\"[S] ||| [S,1] [X28,2] ||| [1] [2] ||| Glue=1\",8,\"[S] ||| [S,1] [X0,2] ||| [1] [2] ||| Glue=1\",9,\"[S] ||| [X8,1] ||| [1] ||| GlueTop=1\",10,\"[Goal] ||| [S,1] ||| [1]\"],\"features\":[\"PassThrough\",\"Glue\",\"GlueTop\",\"LanguageModel\",\"WordPenalty\",\"LHSProb\",\"LexE2F\",\"LexF2E\",\"GenerativeProb\",\"RulePenalty\",\"XFE\",\"XEF\",\"LabelledEF\",\"LabelledFE\",\"LogRuleCount\",\"SingletonRule\"],\"edges\":[{\"tail\":[],\"spans\":[0,1,-1,-1],\"feats\":[5,3.92173,6,2.90799,7,1.85003,8,10.5381,9,1,10,2.77259,11,0.441833,12,2.63906,13,4.96981,14,0.693147],\"rule\":1},{\"tail\":[],\"spans\":[0,1,-1,-1],\"feats\":[5,4.92173,6,3.90799,7,1.85003,8,11.5381,9,1,10,2.77259,11,1.44183,12,2.63906,13,4.96981,14,1.69315],\"rule\":2}],\"node\":{\"in_edges\":[0,1],\"cat\":\"X7\"},\"edges\":[{\"tail\":[0],\"spans\":[0,1,-1,-1],\"feats\":[2,1],\"rule\":3}],\"node\":{\"in_edges\":[2],\"cat\":\"S\"},\"edges\":[{\"tail\":[],\"spans\":[1,2,-1,-1],\"feats\":[5,3.96802,6,2.22462,7,1.83258,8,10.0863,9,1,11,1.20397,12,1.20397,13,-1.98341e-08,14,1.09861],\"rule\":4}],\"node\":{\"in_edges\":[3],\"cat\":\"X28\"},\"edges\":[{\"tail\":[],\"spans\":[1,2,-1,-1],\"feats\":[5,3.98479,6,1.79176,7,3.21888,8,11.1681,9,1,11,2.30259,12,2.30259,15,1],\"rule\":5}],\"node\":{\"in_edges\":[4],\"cat\":\"X0\"},\"edges\":[{\"tail\":[0],\"spans\":[0,2,-1,-1],\"feats\":[5,3.82533,6,3.21888,7,2.52573,8,11.3276,9,1,10,1.20397,11,1.20397,12,2.30259,13,2.30259,15,1],\"rule\":6}],\"node\":{\"in_edges\":[5],\"cat\":\"X8\"},\"edges\":[{\"tail\":[1,2],\"spans\":[0,2,-1,-1],\"feats\":[1,1],\"rule\":7},{\"tail\":[1,3],\"spans\":[0,2,-1,-1],\"feats\":[1,1],\"rule\":8},{\"tail\":[4],\"spans\":[0,2,-1,-1],\"feats\":[2,1],\"rule\":9}],\"node\":{\"in_edges\":[6,7,8],\"cat\":\"S\"},\"edges\":[{\"tail\":[5],\"spans\":[0,2,-1,-1],\"feats\":[],\"rule\":10}],\"node\":{\"in_edges\":[9],\"cat\":\"Goal\"}}";
Hypergraph hg;
istringstream instr(json);
HypergraphIO::ReadFromJSON(&instr, &hg);
SparseVector<double> wts;
wts.set_value(FD::Convert("PassThrough"), -0.929201533002898);
hg.Reweight(wts);
vector<pair<vector<WordID>, prob_t> > list;
std::vector<SparseVector<double> > features;
KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(hg, 10);
for (int i = 0; i < 10; ++i) {
const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d =
kbest.LazyKthBest(hg.nodes_.size() - 1, i);
if (!d) break;
cerr << log(d->score) << " ||| " << TD::GetString(d->yield) << " ||| " << d->feature_values << endl;
}
SparseVector<double> axis; axis.set_value(FD::Convert("Glue"),1.0);
ConvexHullWeightFunction wf(wts, axis); // wts = starting point, axis = search direction
vector<ConvexHull> envs(1);
envs[0] = Inside<ConvexHull, ConvexHullWeightFunction>(hg, NULL, wf);
vector<vector<WordID> > mr(4);
TD::ConvertSentence("untitled", &mr[0]);
TD::ConvertSentence("with no title", &mr[1]);
TD::ConvertSentence("without a title", &mr[2]);
TD::ConvertSentence("without title", &mr[3]);
EvaluationMetric* metric = EvaluationMetric::Instance("IBM_BLEU");
boost::shared_ptr<SegmentEvaluator> scorer1 = metric->CreateSegmentEvaluator(mr);
vector<ErrorSurface> es(1);
ComputeErrorSurface(*scorer1, envs[0], &es[0], metric, hg);
}
|