1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
|
#include "trule.h"
#include <sstream>
#include "stringlib.h"
#include "tdict.h"
#include "rule_lexer.h"
using namespace std;
ostream &operator<<(ostream &o,TRule const& r) {
return o<<r.AsString(true);
}
bool TRule::IsGoal() const {
static const int kGOAL(TD::Convert("Goal") * -1); // this will happen once, and after static init of trule.cc static dict.
return GetLHS() == kGOAL;
}
static WordID ConvertTrgString(const string& w) {
const unsigned len = w.size();
WordID id = 0;
// [X,0] or [0]
// for target rules, we ignore the category, just keep the index
if (len > 2 && w[0]=='[' && w[len-1]==']' && w[len-2] > '0' && w[len-2] <= '9' &&
(len == 3 || (len > 4 && w[len-3] == ','))) {
id = w[len-2] - '0';
id = 1 - id;
} else {
id = TD::Convert(w);
}
return id;
}
static WordID ConvertSrcString(const string& w, bool mono = false) {
const unsigned len = w.size();
// [X,0]
// for source rules, we keep the category and ignore the index (source rules are
// always numbered 1, 2, 3...
if (mono) {
if (len > 2 && w[0]=='[' && w[len-1]==']') {
if (len > 4 && w[len-3] == ',') {
cerr << "[ERROR] Monolingual rules mut not have non-terminal indices:\n "
<< w << endl;
exit(1);
}
// TODO check that source indices go 1,2,3,etc.
return TD::Convert(w.substr(1, len-2)) * -1;
} else {
return TD::Convert(w);
}
} else {
if (len > 4 && w[0]=='[' && w[len-1]==']' && w[len-3] == ',' && w[len-2] > '0' && w[len-2] <= '9') {
return TD::Convert(w.substr(1, len-4)) * -1;
} else {
return TD::Convert(w);
}
}
}
static WordID ConvertLHS(const string& w) {
if (w[0] == '[') {
const unsigned len = w.size();
if (len < 3) { cerr << "Format error: " << w << endl; exit(1); }
return TD::Convert(w.substr(1, len-2)) * -1;
} else {
return TD::Convert(w) * -1;
}
}
TRule* TRule::CreateRuleSynchronous(const string& rule) {
TRule* res = new TRule;
if (res->ReadFromString(rule, true, false)) return res;
cerr << "[ERROR] Failed to creating rule from: " << rule << endl;
delete res;
return NULL;
}
TRule* TRule::CreateRulePhrasetable(const string& rule) {
// TODO make this faster
// TODO add configuration for default NT type
if (rule[0] == '[') {
cerr << "Phrasetable rules shouldn't have a LHS / non-terminals:\n " << rule << endl;
return NULL;
}
TRule* res = new TRule("[X] ||| " + rule, true, false);
if (res->Arity() != 0) {
cerr << "Phrasetable rules should have arity 0:\n " << rule << endl;
delete res;
return NULL;
}
return res;
}
TRule* TRule::CreateRuleMonolingual(const string& rule) {
return new TRule(rule, false, true);
}
namespace {
// callback for lexer
int n_assigned=0;
void assign_trule(const TRulePtr& new_rule, const unsigned int ctf_level, const TRulePtr& coarse_rule, void* extra) {
(void) ctf_level;
(void) coarse_rule;
TRule *assignto=(TRule *)extra;
*assignto=*new_rule;
++n_assigned;
}
}
bool TRule::ReadFromString(const string& line, bool strict, bool mono) {
if (!is_single_line_stripped(line))
cerr<<"\nWARNING: building rule from multi-line string "<<line<<".\n";
// backed off of this: it's failing to parse TRulePtr glue(new TRule("[" + goal_nt + "] ||| [" + goal_nt + ",1] ["+ default_nt + ",2] ||| [1] [2] ||| Glue=1")); thinks [1] is the features!
if (false && !(mono||strict)) {
// use lexer
istringstream il(line);
n_assigned=0;
RuleLexer::ReadRules(&il,assign_trule,this);
if (n_assigned>1)
cerr<<"\nWARNING: more than one rule parsed from multi-line string; kept last: "<<line<<".\n";
return n_assigned;
}
e_.clear();
f_.clear();
scores_.clear();
string w;
istringstream is(line);
int format = CountSubstrings(line, "|||");
if (strict && format < 2) {
cerr << "Bad rule format in strict mode:\n" << line << endl;
return false;
}
if (format >= 2 || (mono && format == 1)) {
while(is>>w && w!="|||") { lhs_ = ConvertLHS(w); }
while(is>>w && w!="|||") { f_.push_back(ConvertSrcString(w, mono)); }
if (!mono) {
while(is>>w && w!="|||") { e_.push_back(ConvertTrgString(w)); }
}
int fv = 0;
if (is) {
string ss;
getline(is, ss);
//cerr << "L: " << ss << endl;
unsigned start = 0;
unsigned len = ss.size();
const size_t ppos = ss.find(" |||");
if (ppos != string::npos) { len = ppos; }
while (start < len) {
while(start < len && (ss[start] == ' ' || ss[start] == ';'))
++start;
if (start == len) break;
unsigned end = start + 1;
while(end < len && (ss[end] != '=' && ss[end] != ' ' && ss[end] != ';'))
++end;
if (end == len || ss[end] == ' ' || ss[end] == ';') {
//cerr << "PROC: '" << ss.substr(start, end - start) << "'\n";
// non-named features
if (end != len) { ss[end] = 0; }
string fname = "PhraseModel_X";
if (fv > 9) { cerr << "Too many phrasetable scores - used named format\n"; abort(); }
fname[12]='0' + fv;
++fv;
// if the feature set is frozen, this may return zero, indicating an
// undefined feature
const int fid = FD::Convert(fname);
if (fid)
scores_.set_value(fid, atof(&ss[start]));
//cerr << "F: " << fname << " VAL=" << scores_.value(FD::Convert(fname)) << endl;
} else {
const int fid = FD::Convert(ss.substr(start, end - start));
start = end + 1;
end = start + 1;
while(end < len && (ss[end] != ' ' && ss[end] != ';'))
++end;
if (end < len) { ss[end] = 0; }
assert(start < len);
if (fid)
scores_.set_value(fid, atof(&ss[start]));
//cerr << "F: " << FD::Convert(fid) << " VAL=" << scores_.value(fid) << endl;
}
start = end + 1;
}
}
} else if (format == 1) {
while(is>>w && w!="|||") { lhs_ = ConvertLHS(w); }
while(is>>w && w!="|||") { e_.push_back(ConvertTrgString(w)); }
f_ = e_;
int x = ConvertLHS("[X]");
for (unsigned i = 0; i < f_.size(); ++i)
if (f_[i] <= 0) { f_[i] = x; }
} else {
cerr << "F: " << format << endl;
cerr << "[ERROR] Don't know how to read:\n" << line << endl;
}
if (mono) {
e_ = f_;
int ci = 0;
for (unsigned i = 0; i < e_.size(); ++i)
if (e_[i] < 0)
e_[i] = ci--;
}
ComputeArity();
return SanityCheck();
}
bool TRule::SanityCheck() const {
vector<int> used(f_.size(), 0);
int ac = 0;
for (unsigned i = 0; i < e_.size(); ++i) {
int ind = e_[i];
if (ind > 0) continue;
ind = -ind;
if ((++used[ind]) != 1) {
cerr << "[ERROR] e-side variable index " << (ind+1) << " used more than once!\n";
return false;
}
ac++;
}
if (ac != Arity()) {
cerr << "[ERROR] e-side arity mismatches f-side\n";
return false;
}
return true;
}
void TRule::ComputeArity() {
int min = 1;
for (vector<WordID>::const_iterator i = e_.begin(); i != e_.end(); ++i)
if (*i < min) min = *i;
arity_ = 1 - min;
}
string TRule::AsString(bool verbose) const {
ostringstream os;
int idx = 0;
if (lhs_ && verbose) {
os << '[' << TD::Convert(lhs_ * -1) << "] |||";
}
for (unsigned i = 0; i < f_.size(); ++i) {
const WordID& w = f_[i];
if (w < 0) {
int wi = w * -1;
++idx;
os << " [" << TD::Convert(wi) << ',' << idx << ']';
} else {
os << ' ' << TD::Convert(w);
}
}
os << " ||| ";
for (unsigned i =0; i<e_.size(); ++i) {
if (i) os << ' ';
const WordID& w = e_[i];
if (w < 1)
os << '[' << (1-w) << ']';
else
os << TD::Convert(w);
}
if (!scores_.empty() && verbose) {
os << " ||| " << scores_;
if (!a_.empty()) {
os << " |||";
for (unsigned i = 0; i < a_.size(); ++i)
os << ' ' << a_[i];
}
}
return os.str();
}
|