1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
|
#include <algorithm>
#include <vector>
#include <queue>
#include <map>
#include <unordered_set>
#include <boost/shared_ptr.hpp>
#include <boost/functional/hash.hpp>
#include "fast_lexical_cast.hpp"
#include "tree_fragment.h"
#include "translator.h"
#include "hg.h"
#include "sentence_metadata.h"
#include "filelib.h"
#include "stringlib.h"
#include "tdict.h"
#include "verbose.h"
using namespace std;
struct Tree2StringGrammarNode {
map<unsigned, Tree2StringGrammarNode> next;
vector<TRulePtr> rules;
};
// this needs to be rewritten so it is fast and checks errors well
// use a lexer probably
static void ReadTree2StringGrammar(istream* in, Tree2StringGrammarNode* root, bool has_multiple_states) {
string line;
int lc = 0;
while(getline(*in, line)) {
++lc;
std::vector<StringPiece> fields = TokenizeMultisep(line, " ||| ");
if (has_multiple_states && fields.size() != 4) {
cerr << "Expected 4 fields in rule file but line " << lc << " is:\n" << line << endl;
abort();
}
if (!has_multiple_states && fields.size() != 3) {
cerr << "Expected 3 fields in rule file but line " << lc << " is:\n" << line << endl;
abort();
}
cdec::TreeFragment rule_src(fields[has_multiple_states ? 1 : 0], true);
// TODO transducer_state should be read from input
const unsigned transducer_state = 0;
Tree2StringGrammarNode* cur = &root->next[transducer_state];
ostringstream os;
int lhs = -(rule_src.root & cdec::ALL_MASK);
// build source RHS for SCFG projection
vector<int> frhs;
// we traverse the rule_src in left to right, DFS order
for (auto sym : rule_src) {
//cerr << TD::Convert(sym & cdec::ALL_MASK) << endl;
cur = &cur->next[sym];
if (cdec::IsFrontier(sym)) { // frontier symbols -> variables
int nt = (sym & cdec::ALL_MASK);
frhs.push_back(-nt);
} else if (cdec::IsTerminal(sym)) {
frhs.push_back(sym);
} // else internal NT, nothing to do
}
os << '[' << TD::Convert(-lhs) << "] |||";
for (auto x : frhs) {
os << ' ';
if (x < 0)
os << '[' << TD::Convert(-x) << ']';
else
os << TD::Convert(x);
}
TRulePtr rule;
if (has_multiple_states) {
cerr << "Not implemented...\n"; abort(); // TODO read in states
} else {
os << " ||| " << fields[1] << " ||| " << fields[2];
rule.reset(new TRule(os.str()));
}
cur->rules.push_back(rule);
//cerr << "RULE: " << rule->AsString() << "\n\n";
}
}
// represents where in an input parse tree the transducer must continue
// and what state it is in
struct TransducerState {
TransducerState() : input_node_idx(), transducer_state() {}
TransducerState(unsigned n, unsigned q) : input_node_idx(n), transducer_state(q) {}
bool operator==(const TransducerState& o) const {
return input_node_idx == o.input_node_idx &&
transducer_state == o.transducer_state;
}
unsigned input_node_idx;
unsigned transducer_state;
};
// represents the state of the composition algorithm
struct ParserState {
ParserState() : in_iter(), node() {}
cdec::TreeFragment::iterator in_iter;
ParserState(const cdec::TreeFragment::iterator& it, unsigned q, Tree2StringGrammarNode* n) :
in_iter(it),
task(it.node_idx(), q),
node(n) {}
ParserState(const cdec::TreeFragment::iterator& it, Tree2StringGrammarNode* n, const ParserState& p) :
in_iter(it),
future_work(p.future_work),
task(p.task),
node(n) {}
bool operator==(const ParserState& o) const {
return node == o.node && task == o.task &&
future_work == o.future_work && in_iter == o.in_iter;
}
vector<TransducerState> future_work;
TransducerState task; // subtree root where and in what state did the transducer start?
Tree2StringGrammarNode* node; // pointer into grammar trie
};
namespace std {
template<>
struct hash<TransducerState> {
size_t operator()(const TransducerState& q) const {
size_t h = boost::hash_value(q.transducer_state);
boost::hash_combine(h, boost::hash_value(q.input_node_idx));
return h;
}
};
template<>
struct hash<ParserState> {
size_t operator()(const ParserState& s) const {
size_t h = boost::hash_value(s.node);
for (auto& w : s.future_work)
boost::hash_combine(h, hash<TransducerState>()(w));
boost::hash_combine(h, hash<TransducerState>()(s.task));
// TODO hash with iterator
return h;
}
};
};
void AddDummyGoalNode(Hypergraph* hg) {
static const int kGOAL = -TD::Convert("Goal");
unsigned old_goal_node_idx = hg->nodes_.size() - 1;
int old_goal_cat = hg->nodes_[old_goal_node_idx].cat_;
TRulePtr goal_rule(new TRule("[Goal] ||| [X] ||| [1]"));
goal_rule->f_[0] = old_goal_cat;
HG::Node* goal_node = hg->AddNode(kGOAL);
goal_node->node_hash = 1;
TailNodeVector tail(1, old_goal_node_idx);
HG::Edge* new_edge = hg->AddEdge(goal_rule, tail);
hg->ConnectEdgeToHeadNode(new_edge, goal_node);
}
struct Tree2StringTranslatorImpl {
vector<boost::shared_ptr<Tree2StringGrammarNode>> root;
bool add_pass_through_rules;
bool has_multiple_states;
unsigned remove_grammars;
Tree2StringTranslatorImpl(const boost::program_options::variables_map& conf,
bool has_multiple_states) :
add_pass_through_rules(conf.count("add_pass_through_rules")),
has_multiple_states(has_multiple_states) {
if (conf.count("grammar")) {
const vector<string> gf = conf["grammar"].as<vector<string>>();
root.resize(gf.size());
unsigned gc = 0;
for (auto& f : gf) {
ReadFile rf(f);
root[gc].reset(new Tree2StringGrammarNode);
ReadTree2StringGrammar(rf.stream(), &*root[gc++], has_multiple_states);
}
}
}
// loads a per-sentence grammar
void LoadSupplementalGrammar(const string& gfile) {
root.resize(root.size() + 1);
root.back().reset(new Tree2StringGrammarNode);
++remove_grammars;
ReadFile rf(gfile);
ReadTree2StringGrammar(rf.stream(), root.back().get(), has_multiple_states);
}
void CreatePassThroughRules(const cdec::TreeFragment& tree) {
static const int kFIDlex = FD::Convert("PassThrough_Lexical");
static const int kFIDabs = FD::Convert("PassThrough_Abstract");
static const int kFIDmix = FD::Convert("PassThrough_Mix");
static const int kFID = FD::Convert("PassThrough");
static unordered_map<int, int> pntfid;
root.resize(root.size() + 1);
root.back().reset(new Tree2StringGrammarNode);
++remove_grammars;
unordered_set<vector<int>,boost::hash<vector<int>>> unique_rule_check;
for (auto& prod : tree.nodes) {
int ntc = 0;
int lhs = -(prod.lhs & cdec::ALL_MASK);
int &ntfid = pntfid[lhs];
if (!ntfid) {
ostringstream fos;
fos << "PassThrough:" << TD::Convert(-lhs);
ntfid = FD::Convert(fos.str());
}
// check for duplicate rule in tree
vector<int> key;
key.push_back(prod.lhs);
bool has_lex = false;
bool has_nt = false;
vector<int> rhse, rhsf;
ostringstream os;
os << '(' << TD::Convert(-lhs);
for (auto& sym : prod.rhs) {
os << ' ';
if (cdec::IsTerminal(sym)) {
has_lex = true;
os << TD::Convert(sym);
rhse.push_back(sym);
rhsf.push_back(sym);
key.push_back(sym);
} else {
has_nt = true;
unsigned id = tree.nodes[sym & cdec::ALL_MASK].lhs & cdec::ALL_MASK;
os << '[' << TD::Convert(id) << ']';
rhsf.push_back(-id);
rhse.push_back(-ntc);
key.push_back(-id);
++ntc;
}
}
os << ')';
if (!unique_rule_check.insert(key).second) continue;
cdec::TreeFragment rule_src(os.str(), true);
Tree2StringGrammarNode* cur = root.back().get();
// do we need all transducer states here??? a list??? no pass through rules???
unsigned transducer_state = 0;
cur = &cur->next[transducer_state];
for (auto sym : rule_src)
cur = &cur->next[sym];
TRulePtr rule(new TRule(rhse, rhsf, lhs));
rule->ComputeArity();
rule->scores_.set_value(ntfid, 1.0);
rule->scores_.set_value(kFID, 1.0);
if (has_lex && has_nt)
rule->scores_.set_value(kFIDmix, 1.0);
else if (has_lex) rule->scores_.set_value(kFIDlex, 1.0);
else if (has_nt) rule->scores_.set_value(kFIDabs, 1.0);
cur->rules.push_back(rule);
}
}
void RemoveGrammars() {
assert(remove_grammars <= root.size());
root.resize(root.size() - remove_grammars);
}
bool Translate(const string& input,
SentenceMetadata* smeta,
const vector<double>& weights,
Hypergraph* minus_lm_forest) {
cdec::TreeFragment input_tree(input, false);
if (add_pass_through_rules) CreatePassThroughRules(input_tree);
Hypergraph hg;
hg.ReserveNodes(input_tree.nodes.size());
unordered_map<TransducerState, unsigned> x2hg(input_tree.nodes.size() * 5);
queue<ParserState> q;
unordered_set<ParserState> unique; // only create items one time
for (auto& g : root) {
unsigned q_0 = 0; // TODO initialize q_0 properly once multi-state transducers are supported
auto rit = g->next.find(q_0);
if (rit != g->next.end()) { // does this g have this transducer state?
q.push(ParserState(input_tree.begin(), q_0, &rit->second));
unique.insert(q.back());
}
}
if (q.size() == 0) return false;
const TransducerState tree_top = q.front().task;
while(!q.empty()) {
ParserState& s = q.front();
if (s.in_iter.at_end()) { // completed a traversal of a subtree
//cerr << "I traversed a subtree of the input rooted at node=" << s.input_node_idx << " sym=" <<
// TD::Convert(input_tree.nodes[s.input_node_idx].lhs & cdec::ALL_MASK) << endl;
if (s.node->rules.size()) {
auto it = x2hg.find(s.task);
if (it == x2hg.end()) {
// TODO create composite state symbol that encodes transducer state type?
HG::Node* new_node = hg.AddNode(-(input_tree.nodes[s.task.input_node_idx].lhs & cdec::ALL_MASK));
new_node->node_hash = std::hash<TransducerState>()(s.task);
it = x2hg.insert(make_pair(s.task, new_node->id_)).first;
}
const unsigned node_id = it->second;
TailNodeVector tail;
for (const auto& n : s.future_work) {
auto it = x2hg.find(n);
if (it == x2hg.end()) {
// TODO create composite state symbol that encodes transducer state type?
HG::Node* new_node = hg.AddNode(-(input_tree.nodes[n.input_node_idx].lhs & cdec::ALL_MASK));
new_node->node_hash = std::hash<TransducerState>()(n);
it = x2hg.insert(make_pair(n, new_node->id_)).first;
}
tail.push_back(it->second);
}
for (auto& r : s.node->rules) {
assert(tail.size() == r->Arity());
HG::Edge* new_edge = hg.AddEdge(r, tail);
new_edge->feature_values_ = r->GetFeatureValues();
// TODO: set i and j
hg.ConnectEdgeToHeadNode(new_edge, &hg.nodes_[node_id]);
}
for (const auto& n : s.future_work) {
const auto it = input_tree.begin(n.input_node_idx); // start tree iterator at node n
for (auto& g : root) {
auto rit = g->next.find(n.transducer_state);
if (rit != g->next.end()) { // does this g have this transducer state?
const ParserState s(it, n.transducer_state, &rit->second);
if (unique.insert(s).second) q.push(s);
}
}
}
} else {
//cerr << "I can't build anything :(\n";
}
} else { // more input tree to match
unsigned sym = *s.in_iter;
if (cdec::IsLHS(sym)) {
auto nit = s.node->next.find(sym);
if (nit != s.node->next.end()) {
//cerr << "MATCHED LHS: " << TD::Convert(sym & cdec::ALL_MASK) << endl;
ParserState news(++s.in_iter, &nit->second, s);
if (unique.insert(news).second) q.push(news);
}
} else if (cdec::IsRHS(sym)) {
//cerr << "Attempting to match RHS: " << TD::Convert(sym & cdec::ALL_MASK) << endl;
cdec::TreeFragment::iterator var = s.in_iter;
var.truncate();
auto nit1 = s.node->next.find(sym);
auto nit2 = s.node->next.find(*var);
if (nit2 != s.node->next.end()) {
//cerr << "MATCHED VAR RHS: " << TD::Convert(sym & cdec::ALL_MASK) << endl;
++var;
// TODO: find out from rule what the new target state is (the 0 in the next line)
// if it is associated with the rule, we won't know until we match the whole input
// so the 0 may be okay (if this is the case, which is probably the easiest thing,
// then the state must be dealt with when the future work becomes real work)
const TransducerState new_task(s.in_iter.child_node(), 0);
ParserState new_s(var, &nit2->second, s);
new_s.future_work.push_back(new_task); // if this traversal of the input succeeds, future_work goes on the q
if (unique.insert(new_s).second) q.push(new_s);
}
//else { cerr << "did not match [" << TD::Convert(sym & cdec::ALL_MASK) << "]\n"; }
if (nit1 != s.node->next.end()) {
//cerr << "MATCHED FULL RHS: " << TD::Convert(sym & cdec::ALL_MASK) << endl;
const ParserState new_s(++s.in_iter, &nit1->second, s);
if (unique.insert(new_s).second) q.push(new_s);
}
//else { cerr << "did not match " << TD::Convert(sym & cdec::ALL_MASK) << "\n"; }
} else if (cdec::IsTerminal(sym)) {
auto nit = s.node->next.find(sym);
if (nit != s.node->next.end()) {
//cerr << "MATCHED TERMINAL: " << TD::Convert(sym) << endl;
const ParserState new_s(++s.in_iter, &nit->second, s);
if (unique.insert(new_s).second) q.push(new_s);
}
} else {
cerr << "This can never happen!\n"; abort();
}
}
q.pop();
}
const auto goal_it = x2hg.find(tree_top);
if (goal_it == x2hg.end()) return false;
//cerr << "Goal node: " << goal << endl;
hg.TopologicallySortNodesAndEdges(goal_it->second);
// there might be nodes that cannot be derived
// the following takes care of them
vector<bool> prune(hg.edges_.size(), false);
hg.PruneEdges(prune, true);
if (hg.edges_.size() == 0) return false;
// rescoring assumes the goal edge is arity 1 (code laziness), add that here
AddDummyGoalNode(&hg);
hg.Reweight(weights);
//hg.PrintGraphviz();
minus_lm_forest->swap(hg);
return true;
}
};
Tree2StringTranslator::Tree2StringTranslator(const boost::program_options::variables_map& conf,
bool has_multiple_states) :
pimpl_(new Tree2StringTranslatorImpl(conf, has_multiple_states)) {}
void Tree2StringTranslator::ProcessMarkupHintsImpl(const map<string, string>& kv) {
pimpl_->remove_grammars = 0;
if (kv.find("grammar0") != kv.end()) {
cerr << "SGML tag grammar0 is not expected (order is: grammar, grammar1, grammar2, ...)\n";
abort();
}
unsigned gc = 0;
set<string> loaded;
while(true) {
string gkey = "grammar";
if (gc > 0) gkey += boost::lexical_cast<string>(gc);
++gc;
map<string,string>::const_iterator it = kv.find(gkey);
if (it == kv.end()) break;
const string& gfile = it->second;
if (loaded.count(gfile) == 1) {
cerr << "Attempting to load " << gfile << " twice!\n";
abort();
}
loaded.insert(gfile);
pimpl_->LoadSupplementalGrammar(gfile);
}
}
bool Tree2StringTranslator::TranslateImpl(const string& input,
SentenceMetadata* smeta,
const vector<double>& weights,
Hypergraph* minus_lm_forest) {
return pimpl_->Translate(input, smeta, weights, minus_lm_forest);
}
void Tree2StringTranslator::SentenceCompleteImpl() {
pimpl_->RemoveGrammars();
}
std::string Tree2StringTranslator::GetDecoderType() const {
return "tree2string";
}
|