1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
|
#include "hg.h"
#include "lazy.h"
#include "tdict.h"
#include "lm/enumerate_vocab.hh"
#include "lm/model.hh"
#include "search/edge.hh"
#include "search/vertex.hh"
#include "util/exception.hh"
#include <boost/scoped_array.hpp>
namespace {
struct MapVocab : public lm::EnumerateVocab {
public:
MapVocab() {}
// Do not call after Lookup.
void Add(lm::WordIndex index, const StringPiece &str) {
const WordID cdec_id = TD::Convert(str.as_string());
if (cdec_id >= out_->size()) out_.resize(cdec_id + 1);
out_[cdec_id] = index;
}
// Assumes Add has been called and will never be called again.
lm::WordIndex FromCDec(WordID id) const {
return out_[out.size() > id ? id : 0];
}
private:
std::vector<lm::WordIndex> out_;
};
class LazyBase {
public:
LazyBase() {}
virtual ~LazyBase() {}
virtual void Search(const Hypergraph &hg) const = 0;
static LazyBase *Load(const char *model_file);
protected:
lm::ngram::Config GetConfig() const {
lm::ngram::Config ret;
ret.enumerate_vocab = &vocab_;
return ret;
}
MapVocab vocab_;
};
template <class Model> class Lazy : public LazyBase {
public:
explicit Lazy(const char *model_file) : m_(model_file, GetConfig()) {}
void Search(const Hypergraph &hg) const;
private:
void ConvertEdge(const Context<Model> &context, bool final, search::Vertex *vertices, const Hypergraph::Edge &in, search::Edge &out) const;
const Model m_;
};
static LazyBase *LazyBase::Load(const char *model_file) {
lm::ngram::ModelType model_type;
if (!lm::ngram::RecognizeBinary(lm_name, model_type)) model_type = lm::ngram::PROBING;
switch (model_type) {
case lm::ngram::PROBING:
return new Lazy<lm::ngram::ProbingModel>(model_file);
case lm::ngram::REST_PROBING:
return new Lazy<lm::ngram::RestProbingModel>(model_file);
default:
UTIL_THROW(util::Exception, "Sorry this lm type isn't supported yet.");
}
}
template <class Model> void Lazy<Model>::Search(const Hypergraph &hg) const {
boost::scoped_array<search::Vertex> out_vertices(new search::Vertex[hg.nodes_.size()]);
boost::scoped_array<search::Edge> out_edges(new search::Edge[hg.edges_.size()]);
for (unsigned int i = 0; i < hg.nodes_.size(); ++i) {
search::Vertex *out_vertex = out_vertices[i];
const Hypergraph::EdgesVector &down_edges = hg.nodes_[i].in_edges_;
for (unsigned int j = 0; j < edges.size(); ++j) {
unsigned int edge_index = down_edges[j];
const Hypergraph::Edge &in_edge = hg.edges_[edge_index];
search::Edge &out_edge = out_edges[edge_index];
}
}
}
// TODO: get weights into here somehow.
template <class Model> void Lazy<Model>::ConvertEdge(const Context<Model> &context, bool final, search::Vertices *vertices, const Hypergraph::Edge &in, search::Edge &out) const {
const std::vector<WordID> &e = in_edge.rule_->e();
std::vector<lm::WordIndex> words;
unsigned int terminals = 0;
for (std::vector<WordID>::const_iterator word = e.begin(); word != e.end(); ++word) {
if (*word <= 0) {
out.Add(vertices[edge.tail_nodes_[-*word]]);
words.push_back(lm::kMaxWordIndex);
} else {
++terminals;
words.push_back(vocab_.FromCDec(*word));
}
}
if (final) {
words.push_back(m_.GetVocabulary().EndSentence());
}
float additive = edge.rule_->GetFeatureValues().dot(weight_vector);
out.InitRule().Init(context, additive, words, final);
}
} // namespace
void PassToLazy(const Hypergraph &hg) {
}
|