1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
|
#include "hg.h"
#include "lazy.h"
#include "fdict.h"
#include "tdict.h"
#include "lm/enumerate_vocab.hh"
#include "lm/model.hh"
#include "search/config.hh"
#include "search/context.hh"
#include "search/edge.hh"
#include "search/vertex.hh"
#include "search/vertex_generator.hh"
#include "util/exception.hh"
#include <boost/scoped_ptr.hpp>
#include <boost/scoped_array.hpp>
#include <iostream>
#include <vector>
namespace {
struct MapVocab : public lm::EnumerateVocab {
public:
MapVocab() {}
// Do not call after Lookup.
void Add(lm::WordIndex index, const StringPiece &str) {
const WordID cdec_id = TD::Convert(str.as_string());
if (cdec_id >= out_.size()) out_.resize(cdec_id + 1);
out_[cdec_id] = index;
}
// Assumes Add has been called and will never be called again.
lm::WordIndex FromCDec(WordID id) const {
return out_[out_.size() > id ? id : 0];
}
private:
std::vector<lm::WordIndex> out_;
};
class LazyBase {
public:
LazyBase(const std::vector<weight_t> &weights) :
cdec_weights_(weights),
config_(search::Weights(weights[FD::Convert("KLanguageModel")], weights[FD::Convert("KLanguageModel_OOV")], weights[FD::Convert("WordPenalty")]), 1000) {
std::cerr << "Weights KLanguageModel " << config_.GetWeights().LM() << " KLanguageModel_OOV " << config_.GetWeights().OOV() << " WordPenalty " << config_.GetWeights().WordPenalty() << std::endl;
}
virtual ~LazyBase() {}
virtual void Search(const Hypergraph &hg) const = 0;
static LazyBase *Load(const char *model_file, const std::vector<weight_t> &weights);
protected:
lm::ngram::Config GetConfig() {
lm::ngram::Config ret;
ret.enumerate_vocab = &vocab_;
return ret;
}
MapVocab vocab_;
const std::vector<weight_t> &cdec_weights_;
const search::Config config_;
};
template <class Model> class Lazy : public LazyBase {
public:
Lazy(const char *model_file, const std::vector<weight_t> &weights) : LazyBase(weights), m_(model_file, GetConfig()) {}
void Search(const Hypergraph &hg) const;
private:
void ConvertEdge(const search::Context<Model> &context, bool final, search::Vertex *vertices, const Hypergraph::Edge &in, search::Edge &out) const;
const Model m_;
};
LazyBase *LazyBase::Load(const char *model_file, const std::vector<weight_t> &weights) {
lm::ngram::ModelType model_type;
if (!lm::ngram::RecognizeBinary(model_file, model_type)) model_type = lm::ngram::PROBING;
switch (model_type) {
case lm::ngram::PROBING:
return new Lazy<lm::ngram::ProbingModel>(model_file, weights);
case lm::ngram::REST_PROBING:
return new Lazy<lm::ngram::RestProbingModel>(model_file, weights);
default:
UTIL_THROW(util::Exception, "Sorry this lm type isn't supported yet.");
}
}
void PrintFinal(const Hypergraph &hg, const search::Edge *edge_base, const search::Final &final) {
const std::vector<WordID> &words = hg.edges_[&final.From() - edge_base].rule_->e();
boost::array<const search::Final*, search::kMaxArity>::const_iterator child(final.Children().begin());
for (std::vector<WordID>::const_iterator i = words.begin(); i != words.end(); ++i) {
if (*i > 0) {
std::cout << TD::Convert(*i) << ' ';
} else {
PrintFinal(hg, edge_base, **child++);
}
}
}
template <class Model> void Lazy<Model>::Search(const Hypergraph &hg) const {
boost::scoped_array<search::Vertex> out_vertices(new search::Vertex[hg.nodes_.size()]);
boost::scoped_array<search::Edge> out_edges(new search::Edge[hg.edges_.size()]);
search::Context<Model> context(config_, m_);
for (unsigned int i = 0; i < hg.nodes_.size(); ++i) {
search::Vertex &out_vertex = out_vertices[i];
const Hypergraph::EdgesVector &down_edges = hg.nodes_[i].in_edges_;
for (unsigned int j = 0; j < down_edges.size(); ++j) {
unsigned int edge_index = down_edges[j];
ConvertEdge(context, i == hg.nodes_.size() - 1, out_vertices.get(), hg.edges_[edge_index], out_edges[edge_index]);
out_vertex.Add(out_edges[edge_index]);
}
out_vertex.FinishedAdding();
search::VertexGenerator(context, out_vertex);
}
search::PartialVertex top = out_vertices[hg.nodes_.size() - 1].RootPartial();
if (top.Empty()) {
std::cout << "NO PATH FOUND";
} else {
search::PartialVertex continuation;
while (!top.Complete()) {
top.Split(continuation);
top = continuation;
}
PrintFinal(hg, out_edges.get(), top.End());
std::cout << "||| " << top.End().Bound() << std::endl;
}
}
// TODO: get weights into here somehow.
template <class Model> void Lazy<Model>::ConvertEdge(const search::Context<Model> &context, bool final, search::Vertex *vertices, const Hypergraph::Edge &in, search::Edge &out) const {
const std::vector<WordID> &e = in.rule_->e();
std::vector<lm::WordIndex> words;
unsigned int terminals = 0;
for (std::vector<WordID>::const_iterator word = e.begin(); word != e.end(); ++word) {
if (*word <= 0) {
out.Add(vertices[in.tail_nodes_[-*word]]);
words.push_back(lm::kMaxWordIndex);
} else {
++terminals;
words.push_back(vocab_.FromCDec(*word));
}
}
if (final) {
words.push_back(m_.GetVocabulary().EndSentence());
}
float additive = in.rule_->GetFeatureValues().dot(cdec_weights_);
UTIL_THROW_IF(isnan(additive), util::Exception, "Bad dot product");
additive -= static_cast<float>(terminals) * context.GetWeights().WordPenalty() / M_LN10;
out.InitRule().Init(context, additive, words, final);
}
boost::scoped_ptr<LazyBase> AwfulGlobalLazy;
} // namespace
void PassToLazy(const char *model_file, const std::vector<weight_t> &weights, const Hypergraph &hg) {
if (!AwfulGlobalLazy.get()) {
AwfulGlobalLazy.reset(LazyBase::Load(model_file, weights));
}
AwfulGlobalLazy->Search(hg);
}
|