1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
|
//TODO: lazily generate feature vectors for hyperarcs (because some of them will be pruned). this means 1) storing ref to rule for those features 2) providing ff interface for regenerating its feature vector from hyperedge+states and probably 3) still caching feat. vect on hyperedge once it's been generated. ff would normally just contribute its weighted score and result state, not component features. however, the hypergraph drops the state used by ffs after rescoring is done, so recomputation would have to start at the leaves and work bottom up. question: which takes more space, feature id+value, or state?
#include "hg.h"
#include <algorithm>
#include <cassert>
#include <numeric>
#include <set>
#include <map>
#include <iostream>
#include <sstream>
#include "viterbi.h"
#include "inside_outside.h"
#include "tdict.h"
using namespace std;
Hypergraph::Edge const* Hypergraph::ViterbiGoalEdge() const
{
Edge const* r=0;
for (unsigned i=0,e=edges_.size();i<e;++i) {
Edge const& e=edges_[i];
if (e.rule_ && e.rule_->IsGoal() && (!r || e.edge_prob_ > r->edge_prob_))
r=&e;
}
return r;
}
std::string Hypergraph::stats(std::string const& name) const
{
ostringstream o;
o<<name<<" (nodes/edges): "<<nodes_.size()<<'/'<<edges_.size()<<endl;
o<<name<<" (paths): "<<NumberOfPaths()<<endl;
return o.str();
}
double Hypergraph::NumberOfPaths() const {
return Inside<double, TransitionCountWeightFunction>(*this);
}
struct ScaledTransitionEventWeightFunction {
typedef SparseVector<prob_t> Result;
ScaledTransitionEventWeightFunction(double alpha) : scale_(alpha) {}
inline SparseVector<prob_t> operator()(const Hypergraph::Edge& e) const {
SparseVector<prob_t> result;
result.set_value(e.id_, e.edge_prob_.pow(scale_));
return result;
}
const double scale_;
};
// safe to reinterpret a vector of these as a vector of prob_t (plain old data)
struct TropicalValue {
TropicalValue() : v_() {}
explicit TropicalValue(int v) {
if (v == 0) v_ = prob_t::Zero();
else if (v == 1) v_ = prob_t::One();
else { cerr << "Bad value in TropicalValue(int).\n"; abort(); }
}
explicit TropicalValue(const prob_t& v) : v_(v) {}
inline TropicalValue& operator+=(const TropicalValue& o) {
if (v_ < o.v_) v_ = o.v_;
return *this;
}
inline TropicalValue& operator*=(const TropicalValue& o) {
v_ *= o.v_;
return *this;
}
inline bool operator==(const TropicalValue& o) const { return v_ == o.v_; }
prob_t v_;
};
struct ViterbiWeightFunction {
typedef TropicalValue Weight;
inline TropicalValue operator()(const Hypergraph::Edge& e) const {
return TropicalValue(e.edge_prob_);
}
};
struct ViterbiTransitionEventWeightFunction {
typedef SparseVector<TropicalValue> Result;
inline SparseVector<TropicalValue> operator()(const Hypergraph::Edge& e) const {
SparseVector<TropicalValue> result;
result.set_value(e.id_, TropicalValue(e.edge_prob_));
return result;
}
};
prob_t Hypergraph::ComputeEdgePosteriors(double scale, vector<prob_t>* posts) const {
const ScaledEdgeProb weight(scale);
const ScaledTransitionEventWeightFunction w2(scale);
SparseVector<prob_t> pv;
const double inside = InsideOutside<prob_t,
ScaledEdgeProb,
SparseVector<prob_t>,
ScaledTransitionEventWeightFunction>(*this, &pv, weight, w2);
posts->resize(edges_.size());
for (int i = 0; i < edges_.size(); ++i)
(*posts)[i] = prob_t(pv.value(i));
return prob_t(inside);
}
prob_t Hypergraph::ComputeBestPathThroughEdges(vector<prob_t>* post) const {
// I don't like this - explicitly passing around counts of each edge. It's clever but slow.
SparseVector<TropicalValue> pv;
const TropicalValue viterbi_weight = InsideOutside<TropicalValue,
ViterbiWeightFunction,
SparseVector<TropicalValue>,
ViterbiTransitionEventWeightFunction>(*this, &pv);
post->resize(edges_.size());
for (int i = 0; i < edges_.size(); ++i)
(*post)[i] = pv.value(i).v_;
return viterbi_weight.v_;
}
void Hypergraph::PushWeightsToSource(double scale) {
vector<prob_t> posts;
ComputeEdgePosteriors(scale, &posts);
for (int i = 0; i < nodes_.size(); ++i) {
const Hypergraph::Node& node = nodes_[i];
prob_t z = prob_t::Zero();
for (int j = 0; j < node.out_edges_.size(); ++j)
z += posts[node.out_edges_[j]];
for (int j = 0; j < node.out_edges_.size(); ++j) {
edges_[node.out_edges_[j]].edge_prob_ = posts[node.out_edges_[j]] / z;
}
}
}
void Hypergraph::PushWeightsToGoal(double scale) {
vector<prob_t> posts;
ComputeEdgePosteriors(scale, &posts);
for (int i = 0; i < nodes_.size(); ++i) {
const Hypergraph::Node& node = nodes_[i];
prob_t z = prob_t::Zero();
for (int j = 0; j < node.in_edges_.size(); ++j)
z += posts[node.in_edges_[j]];
for (int j = 0; j < node.in_edges_.size(); ++j) {
edges_[node.in_edges_[j]].edge_prob_ = posts[node.in_edges_[j]] / z;
}
}
}
struct EdgeExistsWeightFunction {
EdgeExistsWeightFunction(const vector<bool>& prunes) : prunes_(prunes) {}
bool operator()(const Hypergraph::Edge& edge) const {
return !prunes_[edge.id_];
}
private:
const vector<bool>& prunes_;
};
void Hypergraph::PruneEdges(const EdgeMask& prune_edge, bool run_inside_algorithm) {
assert(prune_edge.size() == edges_.size());
vector<bool> filtered = prune_edge;
if (run_inside_algorithm) {
const EdgeExistsWeightFunction wf(prune_edge);
vector<Boolean> reachable;
bool goal_derivable = Inside/* <Boolean, EdgeExistsWeightFunction> */(*this, &reachable, wf);
if (!goal_derivable) {
edges_.clear();
nodes_.clear();
nodes_.push_back(Node());
return;
}
assert(reachable.size() == nodes_.size());
for (int i = 0; i < edges_.size(); ++i) {
bool prune = prune_edge[i];
if (!prune) {
const Edge& edge = edges_[i];
for (int j = 0; j < edge.tail_nodes_.size(); ++j) {
if (!reachable[edge.tail_nodes_[j]]) {
prune = true;
break;
}
}
}
filtered[i] = prune;
}
}
TopologicallySortNodesAndEdges(nodes_.size() - 1, &filtered);
}
void Hypergraph::SetPromise(NodeProbs const& inside,NodeProbs const& outside,double power, bool normalize)
{
int nn=nodes_.size();
if (!nn) return;
assert(inside.size()==nn);
assert(outside.size()==nn);
double sum; //TODO: prevent underflow by using prob_t?
if (normalize)
for (int i=0;i<nn;++i) {
sum+=(nodes_[i].promise=pow(inside[i]*outside[i],power));
}
if (normalize) {
double by=nn/sum; // so avg promise is 1
for (int i=0;i<nn;++i)
nodes_[i].promise*=by;
}
}
void Hypergraph::MarginPrune(vector<prob_t> const& io,prob_t cutoff,vector<bool> const* preserve_mask,bool safe_inside,bool verbose)
{
assert(io.size()==edges_.size());
const prob_t BARELY_SMALLER(1e-6,false); // nearly 1; 1-epsilon
//TODO: //FIXME: if EPSILON is 0, then remnants (useless edges that don't connect to top? or top-connected but not bottom-up buildable referneced?) are left in the hypergraph output that cause mr_vest_map to segfault. adding EPSILON probably just covers up the symptom by making it far less frequent; I imagine any time threshold is set by DensityPrune, cutoff is exactly equal to the io of several nodes, but because of how it's computed, some round slightly down vs. slightly up. probably the flaw is in PruneEdges.
int ne=NumberOfEdges();
cutoff*=BARELY_SMALLER;
prob_t creep=BARELY_SMALLER.root(-(ne+1)); // start more permissive, then become less generous. this is barely more than 1. we want to do this because it's a disaster if something lower in a derivation tree is deleted, but the higher thing remains (unless safe_inside)
vector<bool> prune(ne);
if (verbose) {
if (preserve_mask) cerr << preserve_mask->size() << " " << prune.size() << endl;
cerr<<"Finishing prune for "<<prune.size()<<" edges; CUTOFF=" << cutoff << endl;
}
unsigned pc = 0;
for (int i = 0; i < io.size(); ++i) {
cutoff*=creep;
const bool prune_edge = (io[i] < cutoff);
if (prune_edge) {
++pc;
prune[i] = !(preserve_mask && (*preserve_mask)[i]);
}
}
if (verbose)
cerr << "Finished pruning; removed " << pc << "/" << io.size() << " edges\n";
PruneEdges(prune,safe_inside); // inside reachability check in case cutoff rounded down too much (probably redundant with EPSILON hack)
}
template <class V>
V nth_greatest(int n,vector<V> vs) {
nth_element(vs.begin(),vs.begin()+n,vs.end(),greater<V>());
return vs[n];
}
bool Hypergraph::PruneInsideOutside(double alpha,double density,const EdgeMask* preserve_mask,const bool use_sum_prod_semiring, const double scale,double promise_power,bool safe_inside)
{
bool use_density=density!=0;
bool use_beam=alpha!=0;
assert(!use_beam||alpha>0);
assert(!use_density||density>=1);
assert(!use_sum_prod_semiring||scale>0);
int rnum;
if (use_density) {
const int plen = ViterbiPathLength(*this);
vector<WordID> bp;
rnum = min(static_cast<int>(edges_.size()), static_cast<int>(density * static_cast<double>(plen)));
cerr << "Density pruning: keep "<<rnum<<" of "<<edges_.size()<<" edges (viterbi = "<<plen<<" edges)"<<endl;
if (rnum == edges_.size()) {
cerr << "No pruning required: denisty already sufficient\n";
if (!use_beam)
return false;
use_density=false;
}
}
assert(use_density||use_beam);
InsideOutsides<prob_t> io;
OutsideNormalize<prob_t> norm;
if (use_sum_prod_semiring)
io.compute(*this,norm,ScaledEdgeProb(scale));
else
io.compute(*this,norm,ViterbiWeightFunction()); // the storage gets cast to Tropical from prob_t, scary - e.g. w/ specialized static allocator differences it could break.
vector<prob_t> mm;
io.compute_edge_marginals(*this,mm,EdgeProb()); // should be normalized to 1 for best edges in viterbi. in sum, best is less than 1.
prob_t cutoff=prob_t::One(); // we'll destroy everything smaller than this (note: nothing is bigger than 1). so bigger cutoff = more pruning.
bool density_won=false;
if (use_density) {
cutoff=nth_greatest(rnum,mm);
density_won=true;
}
if (use_beam) {
prob_t best=prob_t::One();
if (use_sum_prod_semiring) {
for (int i = 0; i < mm.size(); ++i)
if (mm[i] > best) best = mm[i];
}
prob_t beam_cut=best*prob_t::exp(-alpha);
if (!(use_density&&cutoff>beam_cut)) {
density_won=false;
cutoff=beam_cut;
}
}
if (promise_power!=0)
SetPromise(io.inside,io.outside,promise_power,true);
MarginPrune(mm,cutoff,preserve_mask,safe_inside); // we do this last because otherwise indices in mm would be wrong for setting promise.
return density_won;
}
void Hypergraph::PrintGraphviz() const {
int ei = 0;
cerr << "digraph G {\n rankdir=LR;\n nodesep=.05;\n";
for (vector<Edge>::const_iterator i = edges_.begin();
i != edges_.end(); ++i) {
const Edge& edge=*i;
++ei;
static const string none = "<null>";
string rule = (edge.rule_ ? edge.rule_->AsString(false) : none);
cerr << " A_" << ei << " [label=\"" << rule << " p=" << edge.edge_prob_
<< " F:" << edge.feature_values_
<< "\" shape=\"rect\"];\n";
Hypergraph::TailNodeVector indorder(edge.tail_nodes_.size(), 0);
int ntc = 0;
for (int i = 0; i < edge.rule_->e_.size(); ++i) {
if (edge.rule_->e_[i] <= 0) indorder[ntc++] = 1 + (-1 * edge.rule_->e_[i]);
}
for (int i = 0; i < edge.tail_nodes_.size(); ++i) {
cerr << " " << edge.tail_nodes_[i] << " -> A_" << ei;
if (edge.tail_nodes_.size() > 1) {
cerr << " [label=\"" << indorder[i] << "\"]";
}
cerr << ";\n";
}
cerr << " A_" << ei << " -> " << edge.head_node_ << ";\n";
}
for (vector<Node>::const_iterator ni = nodes_.begin();
ni != nodes_.end(); ++ni) {
cerr << " " << ni->id_ << "[label=\"" << (ni->cat_ < 0 ? TD::Convert(ni->cat_ * -1) : "")
//cerr << " " << ni->id_ << "[label=\"" << ni->cat_
<< " n=" << ni->id_
// << ",x=" << &*ni
// << ",in=" << ni->in_edges_.size()
// << ",out=" << ni->out_edges_.size()
<< "\"];\n";
}
cerr << "}\n";
}
void Hypergraph::Union(const Hypergraph& other) {
if (&other == this) return;
if (nodes_.empty()) { nodes_ = other.nodes_; edges_ = other.edges_; return; }
int noff = nodes_.size();
int eoff = edges_.size();
int ogoal = other.nodes_.size() - 1;
int cgoal = noff - 1;
// keep a single goal node, so add nodes.size - 1
nodes_.resize(nodes_.size() + ogoal);
// add all edges
edges_.resize(edges_.size() + other.edges_.size());
for (int i = 0; i < ogoal; ++i) {
const Node& on = other.nodes_[i];
Node& cn = nodes_[i + noff];
cn.id_ = i + noff;
cn.in_edges_.resize(on.in_edges_.size());
for (int j = 0; j < on.in_edges_.size(); ++j)
cn.in_edges_[j] = on.in_edges_[j] + eoff;
cn.out_edges_.resize(on.out_edges_.size());
for (int j = 0; j < on.out_edges_.size(); ++j)
cn.out_edges_[j] = on.out_edges_[j] + eoff;
}
for (int i = 0; i < other.edges_.size(); ++i) {
const Edge& oe = other.edges_[i];
Edge& ce = edges_[i + eoff];
ce.id_ = i + eoff;
ce.rule_ = oe.rule_;
ce.feature_values_ = oe.feature_values_;
if (oe.head_node_ == ogoal) {
ce.head_node_ = cgoal;
nodes_[cgoal].in_edges_.push_back(ce.id_);
} else {
ce.head_node_ = oe.head_node_ + noff;
}
ce.tail_nodes_.resize(oe.tail_nodes_.size());
for (int j = 0; j < oe.tail_nodes_.size(); ++j)
ce.tail_nodes_[j] = oe.tail_nodes_[j] + noff;
}
TopologicallySortNodesAndEdges(cgoal);
}
void Hypergraph::PruneUnreachable(int goal_node_id) {
TopologicallySortNodesAndEdges(goal_node_id, NULL);
}
void Hypergraph::RemoveNoncoaccessibleStates(int goal_node_id) {
if (goal_node_id < 0) goal_node_id += nodes_.size();
assert(goal_node_id >= 0);
assert(goal_node_id < nodes_.size());
// TODO finish implementation
abort();
}
struct DFSContext {
int node;
int edge_iter;
int tail_iter;
DFSContext(int n, int e, int t) : node(n), edge_iter(e), tail_iter(t) {}
};
enum ColorType { WHITE, GRAY, BLACK };
template <class T>
struct BadId {
bool operator()(const T& obj) const { return obj.id_ == -1; }
};
template <class T>
struct IdCompare {
bool operator()(const T& a, const T& b) { return a.id_ < b.id_; }
};
// this keeps the nodes' edge indices and edges' node indices in sync. or do nodes not get removed when you prune_edges? seems like they get reordered.
//TODO: if you had parallel arrays associating data w/ each node or edge, you'd want access to reloc_node and reloc_edge - expose in stateful object?
void Hypergraph::TopologicallySortNodesAndEdges(int goal_index,
const vector<bool>* prune_edges) {
// figure out which nodes are reachable from the goal
vector<int> reloc_node(nodes_.size(), -1);
vector<int> reloc_edge(edges_.size(), -1);
vector<ColorType> color(nodes_.size(), WHITE);
vector<DFSContext> stack;
stack.reserve(nodes_.size());
stack.push_back(DFSContext(goal_index, 0, 0));
int node_count = 0;
int edge_count = 0;
while(!stack.empty()) {
const DFSContext& p = stack.back();
int cur_ni = p.node;
int edge_i = p.edge_iter;
int tail_i = p.tail_iter;
stack.pop_back();
const Node* cur_node = &nodes_[cur_ni];
int edge_end = cur_node->in_edges_.size();
while (edge_i != edge_end) {
const Edge& cur_edge = edges_[cur_node->in_edges_[edge_i]];
const int tail_end = cur_edge.tail_nodes_.size();
if ((tail_end == tail_i) || (prune_edges && (*prune_edges)[cur_edge.id_])) {
++edge_i;
tail_i = 0;
continue;
}
const int tail_ni = cur_edge.tail_nodes_[tail_i];
const int tail_color = color[tail_ni];
if (tail_color == WHITE) {
stack.push_back(DFSContext(cur_ni, edge_i, ++tail_i));
cur_ni = tail_ni;
cur_node = &nodes_[cur_ni];
color[cur_ni] = GRAY;
edge_i = 0;
edge_end = cur_node->in_edges_.size();
tail_i = 0;
} else if (tail_color == BLACK) {
++tail_i;
} else if (tail_color == GRAY) {
// this can happen if, e.g., it is possible to rederive
// a single cell in the CKY chart via a cycle.
cerr << "Detected forbidden cycle in HG:\n";
cerr << " " << cur_edge.rule_->AsString() << endl;
while(!stack.empty()) {
const DFSContext& p = stack.back();
cerr << " " << edges_[nodes_[p.node].in_edges_[p.edge_iter]].rule_->AsString() << endl;
stack.pop_back();
}
abort();
}
}
color[cur_ni] = BLACK;
reloc_node[cur_ni] = node_count++;
if (prune_edges) {
for (int i = 0; i < edge_end; ++i) {
int ei = cur_node->in_edges_[i];
if (!(*prune_edges)[ei])
reloc_edge[cur_node->in_edges_[i]] = edge_count++;
}
} else {
for (int i = 0; i < edge_end; ++i)
reloc_edge[cur_node->in_edges_[i]] = edge_count++;
}
}
#ifndef HG_EDGES_TOPO_SORTED
int ec = 0;
for (int i = 0; i < reloc_edge.size(); ++i) {
int& cp = reloc_edge[i];
if (cp >= 0) { cp = ec++; }
}
#endif
#if 0
cerr << "TOPO:";
for (int i = 0; i < reloc_node.size(); ++i)
cerr << " " << reloc_node[i];
cerr << endl;
cerr << "EDGE:";
for (int i = 0; i < reloc_edge.size(); ++i)
cerr << " " << reloc_edge[i];
cerr << endl;
#endif
bool no_op = true;
for (int i = 0; i < reloc_node.size() && no_op; ++i)
if (reloc_node[i] != i) no_op = false;
for (int i = 0; i < reloc_edge.size() && no_op; ++i)
if (reloc_edge[i] != i) no_op = false;
if (no_op) return;
for (int i = 0; i < reloc_node.size(); ++i) {
Node& node = nodes_[i];
node.id_ = reloc_node[i];
int c = 0;
for (int j = 0; j < node.in_edges_.size(); ++j) {
const int new_index = reloc_edge[node.in_edges_[j]];
if (new_index >= 0)
node.in_edges_[c++] = new_index;
}
node.in_edges_.resize(c);
c = 0;
for (int j = 0; j < node.out_edges_.size(); ++j) {
const int new_index = reloc_edge[node.out_edges_[j]];
if (new_index >= 0)
node.out_edges_[c++] = new_index;
}
node.out_edges_.resize(c);
}
for (int i = 0; i < reloc_edge.size(); ++i) {
Edge& edge = edges_[i];
edge.id_ = reloc_edge[i];
edge.head_node_ = reloc_node[edge.head_node_];
for (int j = 0; j < edge.tail_nodes_.size(); ++j)
edge.tail_nodes_[j] = reloc_node[edge.tail_nodes_[j]];
}
edges_.erase(remove_if(edges_.begin(), edges_.end(), BadId<Edge>()), edges_.end());
nodes_.erase(remove_if(nodes_.begin(), nodes_.end(), BadId<Node>()), nodes_.end());
sort(nodes_.begin(), nodes_.end(), IdCompare<Node>());
#ifndef HG_EDGES_TOPO_SORTED
sort(edges_.begin(), edges_.end(), IdCompare<Edge>());
#endif
}
TRulePtr Hypergraph::kEPSRule;
TRulePtr Hypergraph::kUnaryRule;
void Hypergraph::EpsilonRemove(WordID eps) {
if (!kEPSRule) {
kEPSRule.reset(new TRule("[X] ||| <eps> ||| <eps>"));
kUnaryRule.reset(new TRule("[X] ||| [X,1] ||| [X,1]"));
}
vector<bool> kill(edges_.size(), false);
for (int i = 0; i < edges_.size(); ++i) {
const Edge& edge = edges_[i];
if (edge.tail_nodes_.empty() &&
edge.rule_->f_.size() == 1 &&
edge.rule_->f_[0] == eps) {
kill[i] = true;
if (!edge.feature_values_.empty()) {
Node& node = nodes_[edge.head_node_];
if (node.in_edges_.size() != 1) {
cerr << "[WARNING] <eps> edge with features going into non-empty node - can't promote\n";
// this *probably* means that there are multiple derivations of the
// same sequence via different paths through the input forest
// this needs to be investigated and fixed
} else {
for (int j = 0; j < node.out_edges_.size(); ++j)
edges_[node.out_edges_[j]].feature_values_ += edge.feature_values_;
// cerr << "PROMOTED " << edge.feature_values_ << endl;
}
}
}
}
bool created_eps = false;
PruneEdges(kill);
for (int i = 0; i < nodes_.size(); ++i) {
const Node& node = nodes_[i];
if (node.in_edges_.empty()) {
for (int j = 0; j < node.out_edges_.size(); ++j) {
Edge& edge = edges_[node.out_edges_[j]];
if (edge.rule_->Arity() == 2) {
assert(edge.rule_->f_.size() == 2);
assert(edge.rule_->e_.size() == 2);
edge.rule_ = kUnaryRule;
int cur = node.id_;
int t = -1;
assert(edge.tail_nodes_.size() == 2);
for (int i = 0; i < 2; ++i) if (edge.tail_nodes_[i] != cur) { t = edge.tail_nodes_[i]; }
assert(t != -1);
edge.tail_nodes_.resize(1);
edge.tail_nodes_[0] = t;
} else {
edge.rule_ = kEPSRule;
edge.rule_->f_[0] = eps;
edge.rule_->e_[0] = eps;
edge.tail_nodes_.clear();
created_eps = true;
}
}
}
}
vector<bool> k2(edges_.size(), false);
PruneEdges(k2);
if (created_eps) EpsilonRemove(eps);
}
struct EdgeWeightSorter {
const Hypergraph& hg;
EdgeWeightSorter(const Hypergraph& h) : hg(h) {}
bool operator()(int a, int b) const {
return hg.edges_[a].edge_prob_ > hg.edges_[b].edge_prob_;
}
};
void Hypergraph::SortInEdgesByEdgeWeights() {
for (int i = 0; i < nodes_.size(); ++i) {
Node& node = nodes_[i];
sort(node.in_edges_.begin(), node.in_edges_.end(), EdgeWeightSorter(*this));
}
}
Hypergraph* Hypergraph::CreateViterbiHypergraph(const vector<bool>* edges) const {
typedef ViterbiPathTraversal::Result VE;
VE vit_edges;
if (edges) {
assert(edges->size() == edges_.size());
Viterbi(*this, &vit_edges, ViterbiPathTraversal(), EdgeSelectEdgeWeightFunction(*edges));
} else {
Viterbi(*this, &vit_edges, ViterbiPathTraversal() ,EdgeProb());
}
map<int, int> old2new_node;
int num_new_nodes = 0;
for (int i = 0; i < vit_edges.size(); ++i) {
const Edge& edge = *vit_edges[i];
for (int j = 0; j < edge.tail_nodes_.size(); ++j)
assert(old2new_node.count(edge.tail_nodes_[j]) > 0);
if (old2new_node.count(edge.head_node_) == 0) {
old2new_node[edge.head_node_] = num_new_nodes;
++num_new_nodes;
}
}
Hypergraph* out = new Hypergraph(num_new_nodes, vit_edges.size(), is_linear_chain_);
for (map<int, int>::iterator it = old2new_node.begin();
it != old2new_node.end(); ++it) {
const Node& old_node = nodes_[it->first];
Node& new_node = out->nodes_[it->second];
new_node.cat_ = old_node.cat_;
new_node.id_ = it->second;
}
for (int i = 0; i < vit_edges.size(); ++i) {
const Edge& old_edge = *vit_edges[i];
Edge& new_edge = out->edges_[i];
new_edge = old_edge;
new_edge.id_ = i;
const int new_head_node = old2new_node[old_edge.head_node_];
new_edge.head_node_ = new_head_node;
out->nodes_[new_head_node].in_edges_.push_back(i);
for (int j = 0; j < old_edge.tail_nodes_.size(); ++j) {
const int new_tail_node = old2new_node[old_edge.tail_nodes_[j]];
new_edge.tail_nodes_[j] = new_tail_node;
out->nodes_[new_tail_node].out_edges_.push_back(i);
}
}
return out;
}
|