1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
|
#include "ff_spans.h"
#include <sstream>
#include <cassert>
#include <cmath>
#include "filelib.h"
#include "stringlib.h"
#include "sentence_metadata.h"
#include "lattice.h"
#include "fdict.h"
#include "verbose.h"
using namespace std;
namespace {
string Escape(const string& x) {
string y = x;
for (int i = 0; i < y.size(); ++i) {
if (y[i] == '=') y[i]='_';
if (y[i] == ';') y[i]='_';
}
return y;
}
}
// log transform to make long spans cluster together
// but preserve differences
int SpanSizeTransform(unsigned span_size) {
if (!span_size) return 0;
return static_cast<int>(log(span_size+1) / log(1.39)) - 1;
}
SpanFeatures::SpanFeatures(const string& param) :
kS(TD::Convert("S") * -1),
kX(TD::Convert("X") * -1),
use_collapsed_features_(false) {
string mapfile = param;
string valfile;
vector<string> toks;
Tokenize(param, ' ', &toks);
if (toks.size() == 2) { mapfile = toks[0]; valfile = toks[1]; }
if (mapfile.size() > 0) {
int lc = 0;
if (!SILENT) { cerr << "Reading word map for SpanFeatures from " << param << endl; }
ReadFile rf(mapfile);
istream& in = *rf.stream();
string line;
vector<WordID> v;
while(in) {
++lc;
getline(in, line);
if (line.empty()) continue;
v.clear();
TD::ConvertSentence(line, &v);
if (v.size() != 2) {
cerr << "Error reading line " << lc << ": " << line << endl;
abort();
}
word2class_[v[0]] = v[1];
}
word2class_[TD::Convert("BOS")] = TD::Convert("BOS");
word2class_[TD::Convert("EOS")] = TD::Convert("EOS");
oov_ = TD::Convert("OOV");
}
if (valfile.size() > 0) {
use_collapsed_features_ = true;
fid_beg_ = FD::Convert("SpanBegin");
fid_end_ = FD::Convert("SpanEnd");
fid_span_s_ = FD::Convert("SSpanContext");
fid_span_ = FD::Convert("XSpanContext");
ReadFile rf(valfile);
if (!SILENT) { cerr << " Loading span scores from " << valfile << endl; }
istream& in = *rf.stream();
string line;
while(in) {
getline(in, line);
if (line.size() == 0 || line[0] == '#') { continue; }
istringstream in(line);
string feat_name;
double weight;
in >> feat_name >> weight;
feat2val_[feat_name] = weight;
}
}
}
void SpanFeatures::TraversalFeaturesImpl(const SentenceMetadata& smeta,
const Hypergraph::Edge& edge,
const vector<const void*>& ant_contexts,
SparseVector<double>* features,
SparseVector<double>* estimated_features,
void* context) const {
assert(edge.j_ < end_span_ids_.size());
assert(edge.j_ >= 0);
assert(edge.i_ < beg_span_ids_.size());
assert(edge.i_ >= 0);
if (use_collapsed_features_) {
features->set_value(fid_end_, end_span_vals_[edge.j_]);
features->set_value(fid_beg_, beg_span_vals_[edge.i_]);
if (edge.rule_->lhs_ == kS)
features->set_value(fid_span_s_, span_vals_(edge.i_,edge.j_).second);
else
features->set_value(fid_span_, span_vals_(edge.i_,edge.j_).first);
} else { // non-collapsed features:
features->set_value(end_span_ids_[edge.j_], 1);
features->set_value(beg_span_ids_[edge.i_], 1);
features->set_value(end_bigram_ids_[edge.j_], 1);
features->set_value(beg_bigram_ids_[edge.i_], 1);
if (edge.rule_->lhs_ == kS) {
features->set_value(span_feats_(edge.i_,edge.j_).second, 1);
features->set_value(len_span_feats_(edge.i_,edge.j_).second, 1);
} else {
features->set_value(span_feats_(edge.i_,edge.j_).first, 1);
features->set_value(len_span_feats_(edge.i_,edge.j_).first, 1);
}
}
}
WordID SpanFeatures::MapIfNecessary(const WordID& w) const {
if (word2class_.empty()) return w;
map<WordID,WordID>::const_iterator it = word2class_.find(w);
if (it == word2class_.end()) return oov_;
return it->second;
}
void SpanFeatures::PrepareForInput(const SentenceMetadata& smeta) {
const Lattice& lattice = smeta.GetSourceLattice();
const WordID eos = TD::Convert("EOS"); // right of the last source word
const WordID bos = TD::Convert("BOS"); // left of the first source word
beg_span_ids_.resize(lattice.size() + 1);
end_span_ids_.resize(lattice.size() + 1);
span_feats_.resize(lattice.size() + 1, lattice.size() + 1);
beg_bigram_ids_.resize(lattice.size() + 1);
end_bigram_ids_.resize(lattice.size() + 1);
len_span_feats_.resize(lattice.size() + 1, lattice.size() + 1);
if (use_collapsed_features_) {
beg_span_vals_.resize(lattice.size() + 1);
end_span_vals_.resize(lattice.size() + 1);
span_vals_.resize(lattice.size() + 1, lattice.size() + 1);
}
for (int i = 0; i <= lattice.size(); ++i) {
WordID word = eos;
WordID bword = bos;
if (i > 0)
bword = lattice[i-1][0].label;
bword = MapIfNecessary(bword);
if (i < lattice.size())
word = lattice[i][0].label; // rather arbitrary for lattices
word = MapIfNecessary(word);
ostringstream sfid;
sfid << "ES:" << TD::Convert(word);
end_span_ids_[i] = FD::Convert(Escape(sfid.str()));
ostringstream esbiid;
esbiid << "EBI:" << TD::Convert(bword) << "_" << TD::Convert(word);
end_bigram_ids_[i] = FD::Convert(Escape(esbiid.str()));
ostringstream bsbiid;
bsbiid << "BBI:" << TD::Convert(bword) << "_" << TD::Convert(word);
beg_bigram_ids_[i] = FD::Convert(Escape(bsbiid.str()));
ostringstream bfid;
bfid << "BS:" << TD::Convert(bword);
beg_span_ids_[i] = FD::Convert(Escape(bfid.str()));
if (use_collapsed_features_) {
end_span_vals_[i] = feat2val_[Escape(sfid.str())] + feat2val_[Escape(esbiid.str())];
beg_span_vals_[i] = feat2val_[Escape(bfid.str())] + feat2val_[Escape(bsbiid.str())];
}
}
for (int i = 0; i <= lattice.size(); ++i) {
WordID bword = bos;
if (i > 0)
bword = lattice[i-1][0].label;
bword = MapIfNecessary(bword);
for (int j = 0; j <= lattice.size(); ++j) {
WordID word = eos;
if (j < lattice.size())
word = lattice[j][0].label;
word = MapIfNecessary(word);
ostringstream pf;
pf << "S:" << TD::Convert(bword) << "_" << TD::Convert(word);
span_feats_(i,j).first = FD::Convert(Escape(pf.str()));
span_feats_(i,j).second = FD::Convert(Escape("S_" + pf.str()));
ostringstream lf;
const unsigned span_size = (i < j ? j - i : i - j);
lf << "LS:" << SpanSizeTransform(span_size) << "_" << TD::Convert(bword) << "_" << TD::Convert(word);
len_span_feats_(i,j).first = FD::Convert(Escape(lf.str()));
len_span_feats_(i,j).second = FD::Convert(Escape("S_" + lf.str()));
if (use_collapsed_features_) {
span_vals_(i,j).first = feat2val_[Escape(pf.str())] + feat2val_[Escape(lf.str())];
span_vals_(i,j).second = feat2val_[Escape("S_" + pf.str())] + feat2val_[Escape("S_" + lf.str())];
}
}
}
}
RuleNgramFeatures::RuleNgramFeatures(const std::string& param) {
}
void RuleNgramFeatures::PrepareForInput(const SentenceMetadata& smeta) {
// std::map<const TRule*, SparseVector<double> >
rule2_feats_.clear();
}
void RuleNgramFeatures::TraversalFeaturesImpl(const SentenceMetadata& smeta,
const Hypergraph::Edge& edge,
const vector<const void*>& ant_contexts,
SparseVector<double>* features,
SparseVector<double>* estimated_features,
void* context) const {
map<const TRule*, SparseVector<double> >::iterator it = rule2_feats_.find(edge.rule_.get());
if (it == rule2_feats_.end()) {
const TRule& rule = *edge.rule_;
it = rule2_feats_.insert(make_pair(&rule, SparseVector<double>())).first;
SparseVector<double>& f = it->second;
string prev = "<r>";
for (int i = 0; i < rule.f_.size(); ++i) {
WordID w = rule.f_[i];
if (w < 0) w = -w;
assert(w > 0);
const string& cur = TD::Convert(w);
ostringstream os;
os << "RB:" << prev << '_' << cur;
const int fid = FD::Convert(Escape(os.str()));
if (fid <= 0) return;
f.add_value(fid, 1.0);
prev = cur;
}
ostringstream os;
os << "RB:" << prev << '_' << "</r>";
f.set_value(FD::Convert(Escape(os.str())), 1.0);
}
(*features) += it->second;
}
inline bool IsArity2RuleReordered(const TRule& rule) {
const vector<WordID>& e = rule.e_;
for (int i = 0; i < e.size(); ++i) {
if (e[i] <= 0) { return e[i] < 0; }
}
cerr << "IsArity2RuleReordered failed on:\n" << rule.AsString() << endl;
abort();
}
// Chiang, Marton, Resnik 2008 "fine-grained" reordering features
CMR2008ReorderingFeatures::CMR2008ReorderingFeatures(const std::string& param) :
kS(TD::Convert("S") * -1),
use_collapsed_features_(false) {
if (param.size() > 0) {
use_collapsed_features_ = true;
assert(!"not implemented"); // TODO
} else {
unconditioned_fids_.first = FD::Convert("CMRMono");
unconditioned_fids_.second = FD::Convert("CMRReorder");
fids_.resize(16); fids_[0].first = fids_[0].second = -1;
// since I use a log transform, I go a bit higher than David, who bins everything > 10
for (int span_size = 1; span_size <= 15; ++span_size) {
ostringstream m, r;
m << "CMRMono_" << SpanSizeTransform(span_size);
fids_[span_size].first = FD::Convert(m.str());
r << "CMRReorder_" << SpanSizeTransform(span_size);
fids_[span_size].second = FD::Convert(r.str());
}
}
}
void CMR2008ReorderingFeatures::TraversalFeaturesImpl(const SentenceMetadata& smeta,
const Hypergraph::Edge& edge,
const vector<const void*>& ant_contexts,
SparseVector<double>* features,
SparseVector<double>* estimated_features,
void* context) const {
if (edge.Arity() != 2) return;
if (edge.rule_->lhs_ == kS) return;
assert(edge.i_ >= 0);
assert(edge.j_ > edge.i_);
const bool is_reordered = IsArity2RuleReordered(*edge.rule_);
const unsigned span_size = edge.j_ - edge.i_;
if (use_collapsed_features_) {
assert(!"not impl"); // TODO
} else {
if (is_reordered) {
features->set_value(unconditioned_fids_.second, 1.0);
features->set_value(fids_[span_size].second, 1.0);
} else {
features->set_value(unconditioned_fids_.first, 1.0);
features->set_value(fids_[span_size].first, 1.0);
}
}
}
|