1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
|
//TODO: extra int in state to hold "GAP" token is not needed. if there are less than (N-1) words, then null terminate the e.g. left words. however, this would mean treating gapless items differently. not worth the potential bugs right now.
//TODO: allow features to reorder by heuristic*weight the rules' terminal phrases (or of hyperedges'). if first pass has pruning, then compute over whole ruleset as part of heuristic
//TODO: verify that this is true: if ngram order is bigger than lm state's, then the longest possible ngram scores are still used. if you really want a lower order, a truncated copy of the LM should be small enough. otherwise, an option to null out words outside of the order's window would need to be implemented.
#include "ff_lm.h"
#include <sstream>
#include <unistd.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <netdb.h>
#include <boost/shared_ptr.hpp>
#include <boost/lexical_cast.hpp>
#include "tdict.h"
#include "Vocab.h"
#include "Ngram.h"
#include "hg.h"
#include "stringlib.h"
#ifdef HAVE_RANDLM
// http://randlm.sourceforge.net/
#include "RandLM.h"
#endif
using namespace std;
// intend to have a 0-state prelm-pass heuristic LM that is better than 1gram (like how estimated_features are lower order estimates). NgramShare will keep track of all loaded lms and reuse them.
//TODO: ref counting by shared_ptr? for now, first one to load LM needs to stick around as long as all subsequent users.
#include <boost/shared_ptr.hpp>
using namespace boost;
//WARNING: first person to add a pointer to ngram must keep it around until others are done using it.
struct NgramShare
{
// typedef shared_ptr<Ngram> NP;
typedef Ngram *NP;
map<string,NP> ns;
bool have(string const& file) const
{
return ns.find(file)!=ns.end();
}
NP get(string const& file) const
{
assert(have(file));
return ns.find(file)->second;
}
void set(string const& file,NP n)
{
ns[file]=n;
}
void add(string const& file,NP n)
{
assert(!have(file));
set(file,n);
}
};
//TODO: namespace or static?
NgramShare ngs;
namespace NgramCache {
struct Cache {
map<WordID, Cache> tree;
float prob;
Cache() : prob() {}
};
static Cache cache_;
void Clear() { cache_.tree.clear(); }
}
struct LMClient {
LMClient(string hostname) : port(6666) {
char const* host=hostname.c_str();
strcpy(request_buffer, "prob ");
s = const_cast<char*>(strchr(host, ':')); // TODO fix const_cast
if (s != NULL) {
*s = '\0';
++s;
port = atoi(s);
}
sock = socket(AF_INET, SOCK_STREAM, 0);
hp = gethostbyname(host);
if (hp == NULL) {
cerr << "unknown host " << host << endl;
abort();
}
bzero((char *)&server, sizeof(server));
bcopy(hp->h_addr, (char *)&server.sin_addr, hp->h_length);
server.sin_family = hp->h_addrtype;
server.sin_port = htons(port);
int errors = 0;
while (connect(sock, (struct sockaddr *)&server, sizeof(server)) < 0) {
cerr << "Error: connect()\n";
sleep(1);
errors++;
if (errors > 3) exit(1);
}
cerr << "Connected to LM on " << host << " on port " << port << endl;
}
float wordProb(int word, int* context) {
NgramCache::Cache* cur = &NgramCache::cache_;
int i = 0;
while (context[i] > 0) {
cur = &cur->tree[context[i++]];
}
cur = &cur->tree[word];
if (cur->prob) { return cur->prob; }
i = 0;
int pos = TD::AppendString(word, 5, 16000, request_buffer);
while (context[i] > 0) {
assert(pos < 15995);
request_buffer[pos] = ' ';
++pos;
pos = TD::AppendString(context[i], pos, 16000, request_buffer);
++i;
}
assert(pos < 15999);
request_buffer[pos] = '\n';
++pos;
request_buffer[pos] = 0;
write(sock, request_buffer, pos);
int r = read(sock, res, 6);
int errors = 0;
int cnt = 0;
while (1) {
if (r < 0) {
errors++; sleep(1);
cerr << "Error: read()\n";
if (errors > 5) exit(1);
} else if (r==0 || res[cnt] == '\n') { break; }
else {
cnt += r;
if (cnt==6) break;
read(sock, &res[cnt], 6-cnt);
}
}
cur->prob = *reinterpret_cast<float*>(res);
return cur->prob;
}
private:
int sock, port;
char *s;
struct hostent *hp;
struct sockaddr_in server;
char res[8];
char request_buffer[16000];
};
class LanguageModelImpl {
public:
explicit LanguageModelImpl(int order) :
ngram_(*TD::dict_, order), buffer_(), order_(order), state_size_(OrderToStateSize(order) - 1),
floor_(-100.0),
kSTART(TD::Convert("<s>")),
kSTOP(TD::Convert("</s>")),
kUNKNOWN(TD::Convert("<unk>")),
kNONE(-1),
kSTAR(TD::Convert("<{STAR}>")) {}
LanguageModelImpl(int order, const string& f) :
ngram_(*TD::dict_, order), buffer_(), order_(order), state_size_(OrderToStateSize(order) - 1),
floor_(-100.0),
kSTART(TD::Convert("<s>")),
kSTOP(TD::Convert("</s>")),
kUNKNOWN(TD::Convert("<unk>")),
kNONE(-1),
kSTAR(TD::Convert("<{STAR}>")) {
File file(f.c_str(), "r", 0);
assert(file);
cerr << "Reading " << order_ << "-gram LM from " << f << endl;
ngram_.read(file, false);
}
virtual ~LanguageModelImpl() {
}
Ngram *get_lm() // for make_lm_impl ngs sharing only.
{
return &ngram_;
}
inline int StateSize(const void* state) const {
return *(static_cast<const char*>(state) + state_size_);
}
inline void SetStateSize(int size, void* state) const {
*(static_cast<char*>(state) + state_size_) = size;
}
virtual double WordProb(int word, int* context) {
return ngram_.wordProb(word, (VocabIndex*)context);
}
/// NOT a negative logp, i.e. should be worse prob = more negative. that's what SRI wordProb returns, fortunately.
inline double clamp(double logp) const {
return logp < floor_ ? floor_ : logp;
}
inline double LookupProbForBufferContents(int i) {
// int k = i; cerr << "P("; while(buffer_[k] > 0) { std::cerr << TD::Convert(buffer_[k++]) << " "; }
double p = WordProb(buffer_[i], &buffer_[i+1]);
if (p < floor_) p = floor_;
// cerr << ")=" << p << endl;
return p;
}
string DebugStateToString(const void* state) const {
int len = StateSize(state);
const int* astate = reinterpret_cast<const int*>(state);
string res = "[";
for (int i = 0; i < len; ++i) {
res += " ";
res += TD::Convert(astate[i]);
}
res += " ]";
return res;
}
inline double ProbNoRemnant(int i, int len) {
int edge = len;
bool flag = true;
double sum = 0.0;
while (i >= 0) {
if (buffer_[i] == kSTAR) {
edge = i;
flag = false;
} else if (buffer_[i] <= 0) {
edge = i;
flag = true;
} else {
if ((edge-i >= order_) || (flag && !(i == (len-1) && buffer_[i] == kSTART)))
sum += LookupProbForBufferContents(i);
}
--i;
}
return sum;
}
double EstimateProb(const vector<WordID>& phrase) {
int len = phrase.size();
buffer_.resize(len + 1);
buffer_[len] = kNONE;
int i = len - 1;
for (int j = 0; j < len; ++j,--i)
buffer_[i] = phrase[j];
return ProbNoRemnant(len - 1, len);
}
//TODO: make sure this doesn't get used in FinalTraversal, or if it does, that it causes no harm.
//TODO: use stateless_cost instead of ProbNoRemnant, check left words only. for items w/ fewer words than ctx len, how are they represented? kNONE padded?
//TODO: make sure that Vocab_None is set to kNONE in srilm (-1), or that SRILM otherwise interprets -1 as a terminator and not a word
double EstimateProb(const void* state) {
if (!order_) return 0.;
int len = StateSize(state);
// cerr << "residual len: " << len << endl;
buffer_.resize(len + 1);
buffer_[len] = kNONE;
const int* astate = reinterpret_cast<const WordID*>(state);
int i = len - 1;
for (int j = 0; j < len; ++j,--i)
buffer_[i] = astate[j];
return ProbNoRemnant(len - 1, len);
}
// for <s> (n-1 left words) and (n-1 right words) </s>
double FinalTraversalCost(const void* state) {
if (!order_) return 0.;
int slen = StateSize(state);
int len = slen + 2;
// cerr << "residual len: " << len << endl;
buffer_.resize(len + 1);
buffer_[len] = kNONE;
buffer_[len-1] = kSTART;
const int* astate = reinterpret_cast<const WordID*>(state);
int i = len - 2;
for (int j = 0; j < slen; ++j,--i)
buffer_[i] = astate[j];
buffer_[i] = kSTOP;
assert(i == 0);
return ProbNoRemnant(len - 1, len);
}
/// just how SRILM likes it: [rbegin,rend) is a phrase in reverse word order and null terminated so *rend=kNONE. return unigram score for rend[-1] plus
/// cost returned is some kind of log prob (who cares, we're just adding)
double stateless_cost(WordID *rbegin,WordID *rend) {
double sum=0;
for (;rend>rbegin;--rend)
sum+=clamp(WordProb(rend[-1],rend));
return sum;
}
//TODO: this would be a fine rule heuristic (for reordering hyperedges prior to rescoring. for now you can just use a same-lm-file -o 1 prelm-rescore :(
double stateless_cost(TRule const& rule) {
int len = rule.ELength(); // use a gap for each variable
buffer_.resize(len + 1);
buffer_[len] = kNONE;
WordID * const rend=&buffer_[0]+len;
WordID *r=rend; // append by *--r = x
const vector<WordID>& e = rule.e();
//SRILM is reverse order null terminated
//let's write down each phrase in reverse order and score it (note: we could lay them out consecutively then score them (we allocated enough buffer for that), but we won't actually use the whole buffer that way, since it wastes L1 cache.
double sum=0.;
for (unsigned j = 0; j < e.size(); ++j) {
if (e[j] < 1) { // variable
sum+=stateless_cost(r,rend);
r=rend;
} else { // terminal
*--r=e[j];
}
}
// last phrase (if any)
return sum+stateless_cost(r,rend);
}
//NOTE: this is where the scoring of words happens (heuristic happens in EstimateProb)
double LookupWords(const TRule& rule, const vector<const void*>& ant_states, void* vstate) {
if (order_==0)
return stateless_cost(rule);
int len = rule.ELength() - rule.Arity();
for (int i = 0; i < ant_states.size(); ++i)
len += StateSize(ant_states[i]);
buffer_.resize(len + 1);
buffer_[len] = kNONE;
int i = len - 1;
const vector<WordID>& e = rule.e();
for (int j = 0; j < e.size(); ++j) {
if (e[j] < 1) {
const int* astate = reinterpret_cast<const int*>(ant_states[-e[j]]);
int slen = StateSize(astate);
for (int k = 0; k < slen; ++k)
buffer_[i--] = astate[k];
} else {
buffer_[i--] = e[j];
}
}
double sum = 0.0;
int* remnant = reinterpret_cast<int*>(vstate);
int j = 0;
i = len - 1;
int edge = len;
while (i >= 0) {
if (buffer_[i] == kSTAR) {
edge = i;
} else if (edge-i >= order_) {
sum += LookupProbForBufferContents(i);
} else if (edge == len && remnant) {
remnant[j++] = buffer_[i];
}
--i;
}
if (!remnant) return sum;
if (edge != len || len >= order_) {
remnant[j++] = kSTAR;
if (order_-1 < edge) edge = order_-1;
for (int i = edge-1; i >= 0; --i)
remnant[j++] = buffer_[i];
}
SetStateSize(j, vstate);
return sum;
}
private:
public:
static int OrderToStateSize(int order) {
//TODO: should make the order==0 or not cases virtual overrides (performance gain) except then I have a 2x2 set of options against primary ngram owner vs. copy owner - which is easily factored for a performance loss. templates would be relatively concise and obviously lose no perf. honestly why am i even talking about performance? this is probably irrelevant. profile.
return order>1 ?
((order-1) * 2 + 1) * sizeof(WordID) + 1
: 0;
}
protected:
Ngram ngram_;
vector<WordID> buffer_;
const int order_;
const int state_size_;
const double floor_;
public:
const WordID kSTART;
const WordID kSTOP;
const WordID kUNKNOWN;
const WordID kNONE;
const WordID kSTAR;
};
struct ClientLMI : public LanguageModelImpl
{
ClientLMI(int order,string const& server) : LanguageModelImpl(order), client_(server)
{}
virtual double WordProb(int word, int* context) {
return client_.wordProb(word, context);
}
protected:
LMClient client_;
};
struct ReuseLMI : public LanguageModelImpl
{
ReuseLMI(int order, Ngram *ng) : LanguageModelImpl(order), ng(ng)
{}
virtual double WordProb(int word, int* context) {
return ng->wordProb(word, (VocabIndex*)context);
}
protected:
Ngram *ng;
};
LanguageModelImpl *make_lm_impl(int order, string const& f)
{
if (f.find("lm://") == 0) {
return new ClientLMI(order,f.substr(5));
} else if (ngs.have(f)) {
cerr<<"Reusing already loaded Ngram LM: "<<f<<endl;
return new ReuseLMI(order,ngs.get(f));
} else {
LanguageModelImpl *r=new LanguageModelImpl(order,f);
ngs.add(f,r->get_lm());
return r;
}
}
bool parse_lmspec(std::string const& in, int &order, string &featurename, string &filename)
{
vector<string> const& argv=SplitOnWhitespace(in);
featurename="LanguageModel";
order=3;
#define LMSPEC_NEXTARG if (i==argv.end()) { \
cerr << "Missing argument for "<<*last<<". "; goto usage; \
} else { ++i; }
for (vector<string>::const_iterator last,i=argv.begin(),e=argv.end();i!=e;++i) {
string const& s=*i;
if (s[0]=='-') {
if (s.size()>2) goto fail;
switch (s[1]) {
case 'o':
LMSPEC_NEXTARG; order=lexical_cast<int>(*i);
break;
case 'n':
LMSPEC_NEXTARG; featurename=*i;
break;
#undef LMSPEC_NEXTARG
default:
fail:
cerr<<"Unknown LanguageModel option "<<s<<" ; ";
goto usage;
}
} else {
if (filename.empty())
filename=s;
else {
cerr<<"More than one filename provided. ";
goto usage;
}
}
}
if (order > 0 && !filename.empty())
return true;
usage:
cerr<<"LanguageModel specification should be: [-o order>0] [-n featurename] filename"<<endl<<" you provided: "<<in<<endl;
return false;
}
LanguageModel::LanguageModel(const string& param) {
int order;
string featurename,filename;
if (!parse_lmspec(param,order,featurename,filename))
abort();
fid_=FD::Convert("LanguageModel");
pimpl_ = make_lm_impl(order,filename);
//TODO: see if it's actually possible to set order_ later to mutate an already used FF for e.g. multipass. comment in ff.h says only to change state size in constructor. clone instead? differently -n named ones from same lm filename are already possible, so no urgency.
SetStateSize(LanguageModelImpl::OrderToStateSize(order));
}
LanguageModel::~LanguageModel() {
delete pimpl_;
}
string LanguageModel::DebugStateToString(const void* state) const{
return pimpl_->DebugStateToString(state);
}
void LanguageModel::TraversalFeaturesImpl(const SentenceMetadata& smeta,
const Hypergraph::Edge& edge,
const vector<const void*>& ant_states,
SparseVector<double>* features,
SparseVector<double>* estimated_features,
void* state) const {
(void) smeta;
features->set_value(fid_, pimpl_->LookupWords(*edge.rule_, ant_states, state));
estimated_features->set_value(fid_, pimpl_->EstimateProb(state));
}
void LanguageModel::FinalTraversalFeatures(const void* ant_state,
SparseVector<double>* features) const {
features->set_value(fid_, pimpl_->FinalTraversalCost(ant_state));
}
#ifdef HAVE_RANDLM
struct RandLMImpl : public LanguageModelImpl {
RandLMImpl(int order, randlm::RandLM* rlm) :
LanguageModelImpl(order),
rlm_(rlm),
oov_(rlm->getWordID(rlm->getOOV())),
rb_(1000, oov_) {
map<int, randlm::WordID> map_cdec2randlm;
int max_wordid = 0;
for(map<randlm::Word, randlm::WordID>::const_iterator it = rlm->vocabStart();
it != rlm->vocabEnd(); ++it) {
const int cur = TD::Convert(it->first);
map_cdec2randlm[TD::Convert(it->first)] = it->second;
if (cur > max_wordid) max_wordid = cur;
}
cdec2randlm_.resize(max_wordid + 1, oov_);
for (map<int, randlm::WordID>::iterator it = map_cdec2randlm.begin();
it != map_cdec2randlm.end(); ++it)
cdec2randlm_[it->first] = it->second;
map_cdec2randlm.clear();
}
inline randlm::WordID Convert2RandLM(int w) {
return (w < cdec2randlm_.size() ? cdec2randlm_[w] : oov_);
}
virtual double WordProb(int word, int* context) {
int i = order_;
int c = 1;
rb_[i] = Convert2RandLM(word);
while (i > 1 && *context > 0) {
--i;
rb_[i] = Convert2RandLM(*context);
++context;
++c;
}
const void* finalState = 0;
int found;
//cerr << "I = " << i << endl;
return rlm_->getProb(&rb_[i], c, &found, &finalState);
}
private:
boost::shared_ptr<randlm::RandLM> rlm_;
randlm::WordID oov_;
vector<randlm::WordID> cdec2randlm_;
vector<randlm::WordID> rb_;
};
LanguageModelRandLM::LanguageModelRandLM(const string& param) :
fid_(FD::Convert("RandLM")) {
vector<string> argv;
int argc = SplitOnWhitespace(param, &argv);
int order = 3;
// TODO add support for -n FeatureName
string filename;
if (argc < 1) { cerr << "RandLM requires a filename, minimally!\n"; abort(); }
else if (argc == 1) { filename = argv[0]; }
else if (argc == 2 || argc > 3) { cerr << "Don't understand 'RandLM " << param << "'\n"; }
else if (argc == 3) {
if (argv[0] == "-o") {
order = atoi(argv[1].c_str());
filename = argv[2];
} else if (argv[1] == "-o") {
order = atoi(argv[2].c_str());
filename = argv[0];
}
}
set_order(order);
int cache_MB = 200; // increase cache size
randlm::RandLM* rlm = randlm::RandLM::initRandLM(filename, order, cache_MB);
assert(rlm != NULL);
pimpl_ = new RandLMImpl(order, rlm);
}
LanguageModelRandLM::~LanguageModelRandLM() {
delete pimpl_;
}
void LanguageModelRandLM::TraversalFeaturesImpl(const SentenceMetadata& smeta,
const Hypergraph::Edge& edge,
const vector<const void*>& ant_states,
SparseVector<double>* features,
SparseVector<double>* estimated_features,
void* state) const {
(void) smeta;
features->set_value(fid_, pimpl_->LookupWords(*edge.rule_, ant_states, state));
estimated_features->set_value(fid_, pimpl_->EstimateProb(state));
}
void LanguageModelRandLM::FinalTraversalFeatures(const void* ant_state,
SparseVector<double>* features) const {
features->set_value(fid_, pimpl_->FinalTraversalCost(ant_state));
}
#endif
|