summaryrefslogtreecommitdiff
path: root/decoder/ff_klm.cc
blob: 5888c4a3ddde565355df29f8251b0ddd1bd51d4c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
#include "ff_klm.h"

#include "hg.h"
#include "tdict.h"
#include "lm/model.hh"
#include "lm/enumerate_vocab.hh"

using namespace std;

string KLanguageModel::usage(bool param,bool verbose) {
  return "KLanguageModel";
}

struct VMapper : public lm::ngram::EnumerateVocab {
  VMapper(vector<lm::WordIndex>* out) : out_(out), kLM_UNKNOWN_TOKEN(0) { out_->clear(); }
  void Add(lm::WordIndex index, const StringPiece &str) {
    const WordID cdec_id = TD::Convert(str.as_string());
    if (cdec_id >= out_->size())
      out_->resize(cdec_id + 1, kLM_UNKNOWN_TOKEN);
    (*out_)[cdec_id] = index;
  }
  vector<lm::WordIndex>* out_;
  const lm::WordIndex kLM_UNKNOWN_TOKEN;
};

class KLanguageModelImpl {
  inline int StateSize(const void* state) const {
    return *(static_cast<const char*>(state) + state_size_);
  }

  inline void SetStateSize(int size, void* state) const {
    *(static_cast<char*>(state) + state_size_) = size;
  }

#if 0
  virtual double WordProb(WordID word, WordID const* context) {
    return ngram_.wordProb(word, (VocabIndex*)context);
  }

  // may be shorter than actual null-terminated length.  context must be null terminated.  len is just to save effort for subclasses that don't support contextID
  virtual int ContextSize(WordID const* context,int len) {
    unsigned ret;
    ngram_.contextID((VocabIndex*)context,ret);
    return ret;
  }
  virtual double ContextBOW(WordID const* context,int shortened_len) {
    return ngram_.contextBOW((VocabIndex*)context,shortened_len);
  }

  inline double LookupProbForBufferContents(int i) {
//    int k = i; cerr << "P("; while(buffer_[k] > 0) { std::cerr << TD::Convert(buffer_[k++]) << " "; }
    double p = WordProb(buffer_[i], &buffer_[i+1]);
    if (p < floor_) p = floor_;
//    cerr << ")=" << p << endl;
    return p;
  }

  string DebugStateToString(const void* state) const {
    int len = StateSize(state);
    const int* astate = reinterpret_cast<const int*>(state);
    string res = "[";
    for (int i = 0; i < len; ++i) {
      res += " ";
      res += TD::Convert(astate[i]);
    }
    res += " ]";
    return res;
  }

  inline double ProbNoRemnant(int i, int len) {
    int edge = len;
    bool flag = true;
    double sum = 0.0;
    while (i >= 0) {
      if (buffer_[i] == kSTAR) {
        edge = i;
        flag = false;
      } else if (buffer_[i] <= 0) {
        edge = i;
        flag = true;
      } else {
        if ((edge-i >= order_) || (flag && !(i == (len-1) && buffer_[i] == kSTART)))
          sum += LookupProbForBufferContents(i);
      }
      --i;
    }
    return sum;
  }

  double EstimateProb(const vector<WordID>& phrase) {
    int len = phrase.size();
    buffer_.resize(len + 1);
    buffer_[len] = kNONE;
    int i = len - 1;
    for (int j = 0; j < len; ++j,--i)
      buffer_[i] = phrase[j];
    return ProbNoRemnant(len - 1, len);
  }

  //TODO: make sure this doesn't get used in FinalTraversal, or if it does, that it causes no harm.

  //TODO: use stateless_cost instead of ProbNoRemnant, check left words only.  for items w/ fewer words than ctx len, how are they represented?  kNONE padded?

  //Vocab_None is (unsigned)-1 in srilm, same as kNONE. in srilm (-1), or that SRILM otherwise interprets -1 as a terminator and not a word
  double EstimateProb(const void* state) {
    if (unigram) return 0.;
    int len = StateSize(state);
    //  << "residual len: " << len << endl;
    buffer_.resize(len + 1);
    buffer_[len] = kNONE;
    const int* astate = reinterpret_cast<const WordID*>(state);
    int i = len - 1;
    for (int j = 0; j < len; ++j,--i)
      buffer_[i] = astate[j];
    return ProbNoRemnant(len - 1, len);
  }

  //FIXME: this assumes no target words on final unary -> goal rule.  is that ok?
  // for <s> (n-1 left words) and (n-1 right words) </s>
  double FinalTraversalCost(const void* state) {
    if (unigram) return 0.;
    int slen = StateSize(state);
    int len = slen + 2;
    // cerr << "residual len: " << len << endl;
    buffer_.resize(len + 1);
    buffer_[len] = kNONE;
    buffer_[len-1] = kSTART;
    const int* astate = reinterpret_cast<const WordID*>(state);
    int i = len - 2;
    for (int j = 0; j < slen; ++j,--i)
      buffer_[i] = astate[j];
    buffer_[i] = kSTOP;
    assert(i == 0);
    return ProbNoRemnant(len - 1, len);
  }

  /// just how SRILM likes it: [rbegin,rend) is a phrase in reverse word order and null terminated so *rend=kNONE.  return unigram score for rend[-1] plus
  /// cost returned is some kind of log prob (who cares, we're just adding)
  double stateless_cost(WordID *rbegin,WordID *rend) {
    UNIDBG("p(");
    double sum=0;
    for (;rend>rbegin;--rend) {
      sum+=clamp(WordProb(rend[-1],rend));
      UNIDBG(" "<<TD::Convert(rend[-1]));
    }
    UNIDBG(")="<<sum<<endl);
    return sum;
  }

  //TODO: this would be a fine rule heuristic (for reordering hyperedges prior to rescoring.  for now you can just use a same-lm-file -o 1 prelm-rescore :(
  double stateless_cost(TRule const& rule) {
    //TODO: make sure this is correct.
    int len = rule.ELength(); // use a gap for each variable
    buffer_.resize(len + 1);
    WordID * const rend=&buffer_[0]+len;
    *rend=kNONE;
    WordID *r=rend;  // append by *--r = x
    const vector<WordID>& e = rule.e();
    //SRILM is reverse order null terminated
    //let's write down each phrase in reverse order and score it (note: we could lay them out consecutively then score them (we allocated enough buffer for that), but we won't actually use the whole buffer that way, since it wastes L1 cache.
    double sum=0.;
    for (unsigned j = 0; j < e.size(); ++j) {
      if (e[j] < 1) { // variable
        sum+=stateless_cost(r,rend);
        r=rend;
      } else { // terminal
          *--r=e[j];
      }
    }
    // last phrase (if any)
    return sum+stateless_cost(r,rend);
  }

  //NOTE: this is where the scoring of words happens (heuristic happens in EstimateProb)
  double LookupWords(const TRule& rule, const vector<const void*>& ant_states, void* vstate) {
    if (unigram)
      return stateless_cost(rule);
    int len = rule.ELength() - rule.Arity();
    for (int i = 0; i < ant_states.size(); ++i)
      len += StateSize(ant_states[i]);
    buffer_.resize(len + 1);
    buffer_[len] = kNONE;
    int i = len - 1;
    const vector<WordID>& e = rule.e();
    for (int j = 0; j < e.size(); ++j) {
      if (e[j] < 1) {
        const int* astate = reinterpret_cast<const int*>(ant_states[-e[j]]);
        int slen = StateSize(astate);
        for (int k = 0; k < slen; ++k)
          buffer_[i--] = astate[k];
      } else {
        buffer_[i--] = e[j];
      }
    }

    double sum = 0.0;
    int* remnant = reinterpret_cast<int*>(vstate);
    int j = 0;
    i = len - 1;
    int edge = len;

    while (i >= 0) {
      if (buffer_[i] == kSTAR) {
        edge = i;
      } else if (edge-i >= order_) {
        sum += LookupProbForBufferContents(i);
      } else if (edge == len && remnant) {
        remnant[j++] = buffer_[i];
      }
      --i;
    }
    if (!remnant) return sum;

    if (edge != len || len >= order_) {
      remnant[j++] = kSTAR;
      if (order_-1 < edge) edge = order_-1;
      for (int i = edge-1; i >= 0; --i)
        remnant[j++] = buffer_[i];
    }

    SetStateSize(j, vstate);
    return sum;
  }

private:
public:

 protected:
  vector<WordID> buffer_;
 public:
  WordID kSTART;
  WordID kSTOP;
  WordID kUNKNOWN;
  WordID kNONE;
  WordID kSTAR;
  bool unigram;
#endif

  lm::WordIndex MapWord(WordID w) const {
    if (w >= map_.size())
      return 0;
    else
      return map_[w];
  }

 public:
  KLanguageModelImpl(const std::string& param) {
    lm::ngram::Config conf;
    VMapper vm(&map_);
    conf.enumerate_vocab = &vm; 
    ngram_ = new lm::ngram::Model(param.c_str(), conf);
    cerr << "Loaded " << order_ << "-gram KLM from " << param << endl;
    order_ = ngram_->Order();
    state_size_ = ngram_->StateSize() + 1 + (order_-1) * sizeof(int);
  }

  ~KLanguageModelImpl() {
    delete ngram_;
  }

  const int ReserveStateSize() const { return state_size_; }

 private:
  lm::ngram::Model* ngram_;
  int order_;
  int state_size_;
  vector<lm::WordIndex> map_;

};

KLanguageModel::KLanguageModel(const string& param) {
  pimpl_ = new KLanguageModelImpl(param);
  fid_ = FD::Convert("LanguageModel");
  SetStateSize(pimpl_->ReserveStateSize());
}

Features KLanguageModel::features() const {
  return single_feature(fid_);
}

KLanguageModel::~KLanguageModel() {
  delete pimpl_;
}

void KLanguageModel::TraversalFeaturesImpl(const SentenceMetadata& /* smeta */,
                                          const Hypergraph::Edge& edge,
                                          const vector<const void*>& ant_states,
                                          SparseVector<double>* features,
                                          SparseVector<double>* estimated_features,
                                          void* state) const {
//  features->set_value(fid_, pimpl_->LookupWords(*edge.rule_, ant_states, state));
//  estimated_features->set_value(fid_, imp().EstimateProb(state));
}

void KLanguageModel::FinalTraversalFeatures(const void* ant_state,
                                           SparseVector<double>* features) const {
//  features->set_value(fid_, imp().FinalTraversalCost(ant_state));
}