1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
|
#include "decoder.h"
#ifndef HAVE_OLD_CPP
# include <unordered_map>
#else
# include <tr1/unordered_map>
namespace std { using std::tr1::unordered_map; }
#endif
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
#include <boost/make_shared.hpp>
#include <boost/scoped_ptr.hpp>
#include "stringlib.h"
#include "weights.h"
#include "filelib.h"
#include "fdict.h"
#include "timing_stats.h"
#include "verbose.h"
#include "translator.h"
#include "phrasebased_translator.h"
#include "tagger.h"
#include "lextrans.h"
#include "lexalign.h"
#include "csplit.h"
#include "lattice.h"
#include "hg.h"
#include "sentence_metadata.h"
#include "hg_intersect.h"
#include "hg_union.h"
#include "oracle_bleu.h"
#include "apply_models.h"
#include "ff.h"
#include "ffset.h"
#include "ff_factory.h"
#include "viterbi.h"
#include "kbest.h"
#include "inside_outside.h"
#include "exp_semiring.h"
#include "sentence_metadata.h"
#include "sampler.h"
#include "forest_writer.h" // TODO this section should probably be handled by an Observer
#include "incremental.h"
#include "hg_io.h"
#include "aligner.h"
#ifdef CP_TIME
clock_t CpTime::time_;
void CpTime::Add(clock_t x){time_+=x;}
void CpTime::Sub(clock_t x){time_-=x;}
double CpTime::Get(){return (double)(time_)/CLOCKS_PER_SEC;}
#endif
static const double kMINUS_EPSILON = -1e-6; // don't be too strict
using namespace std;
namespace po = boost::program_options;
static bool verbose_feature_functions=true;
namespace Hack { void MaxTrans(const Hypergraph& in, int beam_size); }
namespace NgramCache { void Clear(); }
DecoderObserver::~DecoderObserver() {}
void DecoderObserver::NotifyDecodingStart(const SentenceMetadata&) {}
void DecoderObserver::NotifySourceParseFailure(const SentenceMetadata&) {}
void DecoderObserver::NotifyTranslationForest(const SentenceMetadata&, Hypergraph*) {}
void DecoderObserver::NotifyAlignmentFailure(const SentenceMetadata&) {}
void DecoderObserver::NotifyAlignmentForest(const SentenceMetadata&, Hypergraph*) {}
void DecoderObserver::NotifyDecodingComplete(const SentenceMetadata&) {}
enum SummaryFeature {
kNODE_RISK = 1,
kEDGE_RISK,
kEDGE_PROB
};
struct ELengthWeightFunction {
double operator()(const Hypergraph::Edge& e) const {
return e.rule_->ELength() - e.rule_->Arity();
}
};
inline void ShowBanner() {
cerr << "cdec (c) 2009--2014 by Chris Dyer" << endl;
}
inline string str(char const* name,po::variables_map const& conf) {
return conf[name].as<string>();
}
// print just the --long_opt names suitable for bash compgen
inline void print_options(std::ostream &out,po::options_description const& opts) {
typedef std::vector< boost::shared_ptr<po::option_description> > Ds;
Ds const& ds=opts.options();
out << '"';
for (unsigned i=0;i<ds.size();++i) {
if (i) out<<' ';
out<<"--"<<ds[i]->long_name();
}
out << '"';
}
template <class V>
inline bool store_conf(po::variables_map const& conf,std::string const& name,V *v) {
if (conf.count(name)) {
*v=conf[name].as<V>();
return true;
}
return false;
}
inline boost::shared_ptr<FeatureFunction> make_ff(string const& ffp,bool verbose_feature_functions,char const* pre="") {
string ff, param;
SplitCommandAndParam(ffp, &ff, ¶m);
if (verbose_feature_functions && !SILENT)
cerr << pre << "feature: " << ff;
if (!SILENT) {
if (param.size() > 0) cerr << " (with config parameters '" << param << "')\n";
else cerr << " (no config parameters)\n";
}
boost::shared_ptr<FeatureFunction> pf = ff_registry.Create(ff, param);
if (!pf) exit(1);
int nbyte=pf->StateSize();
if (verbose_feature_functions && !SILENT)
cerr<<"State is "<<nbyte<<" bytes for "<<pre<<"feature "<<ffp<<endl;
return pf;
}
// when the translation forest is first built, it is scored by the features associated
// with the rules. To add other features (like language models, etc), cdec applies one or
// more "rescoring passes", which compute new features and optionally apply new weights
// and then prune the resulting (rescored) hypergraph. All feature values from previous
// passes are carried over into subsequent passes (where they may have different weights).
struct RescoringPass {
RescoringPass() : fid_summary(), density_prune(), beam_prune() {}
boost::shared_ptr<ModelSet> models;
boost::shared_ptr<IntersectionConfiguration> inter_conf;
vector<const FeatureFunction*> ffs;
boost::shared_ptr<vector<weight_t> > weight_vector;
int fid_summary; // 0 == no summary feature
double density_prune; // 0 == don't density prune
double beam_prune; // 0 == don't beam prune
};
ostream& operator<<(ostream& os, const RescoringPass& rp) {
os << "[num_fn=" << rp.ffs.size();
if (rp.inter_conf) { os << " int_alg=" << *rp.inter_conf; }
//if (rp.weight_vector.size() > 0) os << " new_weights";
if (rp.fid_summary) os << " summary_feature=" << FD::Convert(rp.fid_summary);
if (rp.density_prune) os << " density_prune=" << rp.density_prune;
if (rp.beam_prune) os << " beam_prune=" << rp.beam_prune;
os << ']';
return os;
}
struct DecoderImpl {
DecoderImpl(po::variables_map& conf, int argc, char** argv, istream* cfg);
~DecoderImpl();
bool Decode(const string& input, DecoderObserver*);
vector<weight_t>& CurrentWeightVector() {
return (rescoring_passes.empty() ? *init_weights : *rescoring_passes.back().weight_vector);
}
void SetId(int next_sent_id) { sent_id = next_sent_id - 1; }
void forest_stats(Hypergraph &forest,string name,bool show_tree,bool show_deriv=false, bool extract_rules=false, boost::shared_ptr<WriteFile> extract_file = boost::make_shared<WriteFile>()) {
cerr << viterbi_stats(forest,name,true,show_tree,show_deriv,extract_rules, extract_file);
cerr << endl;
}
bool beam_param(po::variables_map const& conf,string const& name,double *val,bool scale_srclen=false,double srclen=1) {
if (conf.count(name)) {
*val=conf[name].as<double>()*(scale_srclen?srclen:1);
return true;
}
return false;
}
void maybe_prune(Hypergraph &forest,po::variables_map const& conf,string nbeam,string ndensity,string forestname,double srclen) {
double beam_prune=0,density_prune=0;
bool use_beam_prune=beam_param(conf,nbeam,&beam_prune,conf.count("scale_prune_srclen"),srclen);
bool use_density_prune=beam_param(conf,ndensity,&density_prune);
if (use_beam_prune || use_density_prune) {
double presize=forest.edges_.size();
vector<bool> preserve_mask,*pm=0;
if (conf.count("csplit_preserve_full_word")) {
preserve_mask.resize(forest.edges_.size());
preserve_mask[CompoundSplit::GetFullWordEdgeIndex(forest)] = true;
pm=&preserve_mask;
}
forest.PruneInsideOutside(beam_prune,density_prune,pm,false,1);
if (!forestname.empty()) forestname=" "+forestname;
if (!SILENT) {
forest_stats(forest," Pruned "+forestname+" forest",false,false);
cerr << " Pruned "<<forestname<<" forest portion of edges kept: "<<forest.edges_.size()/presize<<endl;
}
}
}
void SampleRecurse(const Hypergraph& hg, const vector<SampleSet<prob_t> >& ss, int n, vector<WordID>* out) {
const SampleSet<prob_t>& s = ss[n];
int i = rng->SelectSample(s);
const Hypergraph::Edge& edge = hg.edges_[hg.nodes_[n].in_edges_[i]];
vector<vector<WordID> > ants(edge.tail_nodes_.size());
for (int j = 0; j < ants.size(); ++j)
SampleRecurse(hg, ss, edge.tail_nodes_[j], &ants[j]);
vector<const vector<WordID>*> pants(ants.size());
for (int j = 0; j < ants.size(); ++j) pants[j] = &ants[j];
edge.rule_->ESubstitute(pants, out);
}
struct SampleSort {
bool operator()(const pair<int,string>& a, const pair<int,string>& b) const {
return a.first > b.first;
}
};
// TODO this should be handled by an Observer
void MaxTranslationSample(Hypergraph* hg, const int samples, const int k) {
unordered_map<string, int, boost::hash<string> > m;
hg->PushWeightsToGoal();
const int num_nodes = hg->nodes_.size();
vector<SampleSet<prob_t> > ss(num_nodes);
for (int i = 0; i < num_nodes; ++i) {
SampleSet<prob_t>& s = ss[i];
const vector<int>& in_edges = hg->nodes_[i].in_edges_;
for (int j = 0; j < in_edges.size(); ++j) {
s.add(hg->edges_[in_edges[j]].edge_prob_);
}
}
for (int i = 0; i < samples; ++i) {
vector<WordID> yield;
SampleRecurse(*hg, ss, hg->nodes_.size() - 1, &yield);
const string trans = TD::GetString(yield);
++m[trans];
}
vector<pair<int, string> > dist;
for (unordered_map<string, int, boost::hash<string> >::iterator i = m.begin();
i != m.end(); ++i) {
dist.push_back(make_pair(i->second, i->first));
}
sort(dist.begin(), dist.end(), SampleSort());
if (k) {
for (int i = 0; i < k; ++i)
cout << dist[i].first << " ||| " << dist[i].second << endl;
} else {
cout << dist[0].second << endl;
}
}
void ParseTranslatorInputLattice(const string& line, string* input, Lattice* ref) {
string sref;
ParseTranslatorInput(line, input, &sref);
if (sref.size() > 0) {
assert(ref);
LatticeTools::ConvertTextOrPLF(sref, ref);
}
}
// used to construct the suffix string to get the name of arguments for multiple passes
// e.g., the "2" in --weights2
static string StringSuffixForRescoringPass(int pass) {
if (pass == 0) return "";
string ps = "1";
assert(pass < 9);
ps[0] += pass;
return ps;
}
vector<RescoringPass> rescoring_passes;
po::variables_map& conf;
OracleBleu oracle;
string formalism;
boost::shared_ptr<Translator> translator;
boost::shared_ptr<vector<weight_t> > init_weights; // weights used with initial parse
vector<boost::shared_ptr<FeatureFunction> > pffs;
boost::shared_ptr<RandomNumberGenerator<boost::mt19937> > rng;
int sample_max_trans;
bool aligner_mode;
bool graphviz;
bool joshua_viz;
bool encode_b64;
bool kbest;
bool unique_kbest;
bool get_oracle_forest;
boost::shared_ptr<WriteFile> extract_file;
int combine_size;
int sent_id;
SparseVector<prob_t> acc_vec; // accumulate gradient
double acc_obj; // accumulate objective
int g_count; // number of gradient pieces computed
bool csplit_output_plf;
bool write_gradient; // TODO Observer
bool feature_expectations; // TODO Observer
bool output_training_vector; // TODO Observer
bool remove_intersected_rule_annotations;
boost::scoped_ptr<IncrementalBase> incremental;
static void ConvertSV(const SparseVector<prob_t>& src, SparseVector<double>* trg) {
for (SparseVector<prob_t>::const_iterator it = src.begin(); it != src.end(); ++it)
trg->set_value(it->first, it->second.as_float());
}
};
DecoderImpl::~DecoderImpl() {
if (output_training_vector && !acc_vec.empty()) {
if (encode_b64) {
cout << "0\t";
SparseVector<double> dav; ConvertSV(acc_vec, &dav);
B64::Encode(acc_obj, dav, &cout);
cout << endl << flush;
} else {
cout << "0\t**OBJ**=" << acc_obj << ';' << acc_vec << endl << flush;
}
}
}
DecoderImpl::DecoderImpl(po::variables_map& conf, int argc, char** argv, istream* cfg) : conf(conf) {
if (cfg) { if (argc || argv) { cerr << "DecoderImpl() can only take a file or command line options, not both\n"; exit(1); } }
bool show_config;
bool show_weights;
vector<string> cfg_files;
po::options_description opts("Configuration options");
opts.add_options()
("formalism,f",po::value<string>(),"Decoding formalism; values include SCFG, FST, PB, LexTrans (lexical translation model, also disc training), CSplit (compound splitting), Tagger (sequence labeling), LexAlign (alignment only, or EM training)")
("input,i",po::value<string>()->default_value("-"),"Source file")
("grammar,g",po::value<vector<string> >()->composing(),"Either SCFG grammar file(s) or phrase tables file(s)")
("per_sentence_grammar_file", po::value<string>(), "Optional (and possibly not implemented) per sentence grammar file enables all per sentence grammars to be stored in a single large file and accessed by offset")
("list_feature_functions,L","List available feature functions")
#ifdef HAVE_CMPH
("cmph_perfect_feature_hash,h", po::value<string>(), "Load perfect hash function for features")
#endif
("weights,w",po::value<string>(),"Feature weights file (initial forest / pass 1)")
("feature_function,F",po::value<vector<string> >()->composing(), "Pass 1 additional feature function(s) (-L for list)")
("intersection_strategy,I",po::value<string>()->default_value("cube_pruning"), "Pass 1 intersection strategy for incorporating finite-state features; values include Cube_pruning, Full, Fast_cube_pruning, Fast_cube_pruning_2")
("cubepruning_pop_limit,K",po::value<unsigned>()->default_value(200), "Max number of pops from the candidate heap at each node")
("summary_feature", po::value<string>(), "Compute a 'summary feature' at the end of the pass (before any pruning) with name=arg and value=inside-outside/Z")
("summary_feature_type", po::value<string>()->default_value("node_risk"), "Summary feature types: node_risk, edge_risk, edge_prob")
("density_prune", po::value<double>(), "Pass 1 pruning: keep no more than this many times the number of edges used in the best derivation tree (>=1.0)")
("beam_prune", po::value<double>(), "Pass 1 pruning: Prune paths from scored forest, keep paths within exp(alpha>=0)")
("weights2",po::value<string>(),"Optional pass 2")
("feature_function2",po::value<vector<string> >()->composing(), "Optional pass 2")
("intersection_strategy2",po::value<string>()->default_value("cube_pruning"), "Optional pass 2")
("cubepruning_pop_limit2",po::value<unsigned>()->default_value(200), "Optional pass 2")
("summary_feature2", po::value<string>(), "Optional pass 2")
("density_prune2", po::value<double>(), "Optional pass 2")
("beam_prune2", po::value<double>(), "Optional pass 2")
("weights3",po::value<string>(),"Optional pass 3")
("feature_function3",po::value<vector<string> >()->composing(), "Optional pass 3")
("intersection_strategy3",po::value<string>()->default_value("cube_pruning"), "Optional pass 3")
("cubepruning_pop_limit3",po::value<unsigned>()->default_value(200), "Optional pass 3")
("summary_feature3", po::value<string>(), "Optional pass 3")
("density_prune3", po::value<double>(), "Optional pass 3")
("beam_prune3", po::value<double>(), "Optional pass 3")
("add_pass_through_rules,P","Add rules to translate OOV words as themselves")
("add_extra_pass_through_features,Q", po::value<unsigned int>()->default_value(0), "Add PassThrough{1..N} features, capped at N.")
("k_best,k",po::value<int>(),"Extract the k best derivations")
("unique_k_best,r", "Unique k-best translation list")
("aligner,a", "Run as a word/phrase aligner (src & ref required)")
("aligner_use_viterbi", "If run in alignment mode, compute the Viterbi (rather than MAP) alignment")
("goal",po::value<string>()->default_value("S"),"Goal symbol (SCFG & FST)")
("freeze_feature_set,Z", "Freeze feature set after reading feature weights file")
("warn_0_weight","Warn about any feature id that has a 0 weight (this is perfectly safe if you intend 0 weight, though)")
("scfg_extra_glue_grammar", po::value<string>(), "Extra glue grammar file (Glue grammars apply when i=0 but have no other span restrictions)")
("scfg_no_hiero_glue_grammar,n", "No Hiero glue grammar (nb. by default the SCFG decoder adds Hiero glue rules)")
("scfg_default_nt,d",po::value<string>()->default_value("X"),"Default non-terminal symbol in SCFG")
("scfg_max_span_limit,S",po::value<int>()->default_value(10),"Maximum non-terminal span limit (except \"glue\" grammar)")
("quiet", "Disable verbose output")
("show_config", po::bool_switch(&show_config), "show contents of loaded -c config files.")
("show_weights", po::bool_switch(&show_weights), "show effective feature weights")
("show_feature_dictionary", "After decoding the last input, write the contents of the feature dictionary")
("show_joshua_visualization,J", "Produce output compatible with the Joshua visualization tools")
("show_tree_structure", "Show the Viterbi derivation structure")
("show_expected_length", "Show the expected translation length under the model")
("show_partition,z", "Compute and show the partition (inside score)")
("show_conditional_prob", "Output the conditional log prob to STDOUT instead of a translation")
("show_cfg_search_space", "Show the search space as a CFG")
("show_cfg_alignment_space", "Show the alignment hypergraph as a CFG")
("show_target_graph", po::value<string>(), "Directory to write the target hypergraphs to")
("incremental_search", po::value<string>(), "Run lazy search with this language model file")
("coarse_to_fine_beam_prune", po::value<double>(), "Prune paths from coarse parse forest before fine parse, keeping paths within exp(alpha>=0)")
("ctf_beam_widen", po::value<double>()->default_value(2.0), "Expand coarse pass beam by this factor if no fine parse is found")
("ctf_num_widenings", po::value<int>()->default_value(2), "Widen coarse beam this many times before backing off to full parse")
("ctf_no_exhaustive", "Do not fall back to exhaustive parse if coarse-to-fine parsing fails")
("scale_prune_srclen", "scale beams by the input length (in # of tokens; may not be what you want for lattices")
("lextrans_dynasearch", "'DynaSearch' neighborhood instead of usual partition, as defined by Smith & Eisner (2005)")
("lextrans_use_null", "Support source-side null words in lexical translation")
("lextrans_align_only", "Only used in alignment mode. Limit target words generated by reference")
("tagger_tagset,t", po::value<string>(), "(Tagger) file containing tag set")
("csplit_output_plf", "(Compound splitter) Output lattice in PLF format")
("csplit_preserve_full_word", "(Compound splitter) Always include the unsegmented form in the output lattice")
("extract_rules", po::value<string>(), "Extract the rules used in translation (not de-duped!) to a file in this directory")
("show_derivations", po::value<string>(), "Directory to print the derivation structures to")
("show_derivations_mask", po::value<int>()->default_value(Hypergraph::SPAN|Hypergraph::RULE), "Bit-mask for what to print in derivation structures")
("graphviz","Show (constrained) translation forest in GraphViz format")
("max_translation_beam,x", po::value<int>(), "Beam approximation to get max translation from the chart")
("max_translation_sample,X", po::value<int>(), "Sample the max translation from the chart")
("pb_max_distortion,D", po::value<int>()->default_value(4), "Phrase-based decoder: maximum distortion")
("cll_gradient,G","Compute conditional log-likelihood gradient and write to STDOUT (src & ref required)")
("get_oracle_forest,o", "Calculate rescored hypergraph using approximate BLEU scoring of rules")
("feature_expectations","Write feature expectations for all features in chart (**OBJ** will be the partition)")
("vector_format",po::value<string>()->default_value("b64"), "Sparse vector serialization format for feature expectations or gradients, includes (text or b64)")
("combine_size,C",po::value<int>()->default_value(1), "When option -G is used, process this many sentence pairs before writing the gradient (1=emit after every sentence pair)")
("forest_output,O",po::value<string>(),"Directory to write forests to")
("remove_intersected_rule_annotations", "After forced decoding is completed, remove nonterminal annotations (i.e., the source side spans)");
// ob.AddOptions(&opts);
po::options_description clo("Command line options");
clo.add_options()
("config,c", po::value<vector<string> >(&cfg_files), "Configuration file(s) - latest has priority")
("help,?", "Print this help message and exit")
("usage,u", po::value<string>(), "Describe a feature function type")
("compgen", "Print just option names suitable for bash command line completion builtin 'compgen'")
;
po::options_description dconfig_options, dcmdline_options;
dconfig_options.add(opts);
dcmdline_options.add(dconfig_options).add(clo);
if (argc) {
po::store(parse_command_line(argc, argv, dcmdline_options), conf);
if (conf.count("compgen")) {
print_options(cout,dcmdline_options);
cout << endl;
exit(0);
}
if (conf.count("quiet"))
SetSilent(true);
if (!SILENT) ShowBanner();
}
if (conf.count("show_config")) // special handling needed because we only want to notify() once.
show_config=true;
if (conf.count("config") && !cfg) {
typedef vector<string> Cs;
Cs cs=conf["config"].as<Cs>();
for (int i=0;i<cs.size();++i) {
string cfg=cs[i];
cerr << "Configuration file: " << cfg << endl;
ReadFile conff(cfg);
po::store(po::parse_config_file(*conff, dconfig_options), conf);
}
}
if (conf.count("quiet"))
SetSilent(true);
if (cfg) po::store(po::parse_config_file(*cfg, dconfig_options), conf);
po::notify(conf);
if (show_config && !cfg_files.empty()) {
cerr<< "\nConfig files:\n\n";
for (int i=0;i<cfg_files.size();++i) {
string cfg=cfg_files[i];
cerr << "Configuration file: " << cfg << endl;
CopyFile(cfg,cerr);
cerr << "(end config "<<cfg<<"\n\n";
}
cerr <<"Command line:";
for (int i=0;i<argc;++i)
cerr<<" "<<argv[i];
cerr << "\n\n";
}
if (conf.count("list_feature_functions")) {
cerr << "Available feature functions (specify with -F; describe with -u FeatureName):\n";
ff_registry.DisplayList(); //TODO
cerr << endl;
exit(1);
}
if (conf.count("usage")) {
ff_usage(str("usage",conf));
exit(0);
}
if (conf.count("help")) {
cout << dcmdline_options << endl;
exit(0);
}
if (conf.count("help") || conf.count("formalism") == 0) {
cerr << dcmdline_options << endl;
exit(1);
}
formalism = LowercaseString(str("formalism",conf));
if (formalism != "t2s" && formalism != "t2t" && formalism != "scfg" && formalism != "fst" && formalism != "lextrans" && formalism != "pb" && formalism != "csplit" && formalism != "tagger" && formalism != "lexalign" && formalism != "rescore") {
cerr << "Error: --formalism takes only 'scfg', 'fst', 'pb', 't2s', 't2t', 'csplit', 'lextrans', 'lexalign', 'rescore', or 'tagger'\n";
cerr << dcmdline_options << endl;
exit(1);
}
write_gradient = conf.count("cll_gradient");
feature_expectations = conf.count("feature_expectations");
if (write_gradient && feature_expectations) {
cerr << "You can only specify --gradient or --feature_expectations, not both!\n";
exit(1);
}
output_training_vector = (write_gradient || feature_expectations);
const string formalism = LowercaseString(str("formalism",conf));
const bool csplit_preserve_full_word = conf.count("csplit_preserve_full_word");
if (csplit_preserve_full_word &&
(formalism != "csplit" || !(conf.count("beam_prune")||conf.count("density_prune")))) {
cerr << "--csplit_preserve_full_word should only be "
<< "used with csplit AND --*_prune!\n";
exit(1);
}
csplit_output_plf = conf.count("csplit_output_plf");
if (csplit_output_plf && formalism != "csplit") {
cerr << "--csplit_output_plf should only be used with csplit!\n";
exit(1);
}
// load perfect hash function for features
if (conf.count("cmph_perfect_feature_hash")) {
cerr << "Loading perfect hash function from " << conf["cmph_perfect_feature_hash"].as<string>() << " ...\n";
FD::EnableHash(conf["cmph_perfect_feature_hash"].as<string>());
cerr << " " << FD::NumFeats() << " features in map\n";
}
// load initial feature weights (and possibly freeze feature set)
init_weights.reset(new vector<weight_t>);
if (conf.count("weights"))
Weights::InitFromFile(str("weights",conf), init_weights.get());
if (conf.count("extract_rules")) {
if (!DirectoryExists(conf["extract_rules"].as<string>()))
MkDirP(conf["extract_rules"].as<string>());
}
// determine the number of rescoring/pruning/weighting passes configured
const int MAX_PASSES = 3;
for (int pass = 0; pass < MAX_PASSES; ++pass) {
string ws = "weights" + StringSuffixForRescoringPass(pass);
string ff = "feature_function" + StringSuffixForRescoringPass(pass);
string sf = "summary_feature" + StringSuffixForRescoringPass(pass);
string bp = "beam_prune" + StringSuffixForRescoringPass(pass);
string dp = "density_prune" + StringSuffixForRescoringPass(pass);
bool first_pass_condition = ((pass == 0) && (conf.count(ff) || conf.count(bp) || conf.count(dp)));
bool nth_pass_condition = ((pass > 0) && (conf.count(ws) || conf.count(ff) || conf.count(bp) || conf.count(dp)));
if (first_pass_condition || nth_pass_condition) {
rescoring_passes.push_back(RescoringPass());
RescoringPass& rp = rescoring_passes.back();
// only configure new weights if pass > 0, otherwise we reuse the initial chart weights
if (nth_pass_condition && conf.count(ws)) {
rp.weight_vector.reset(new vector<weight_t>());
Weights::InitFromFile(str(ws.c_str(), conf), rp.weight_vector.get());
}
bool has_stateful = false;
if (conf.count(ff)) {
vector<string> add_ffs;
store_conf(conf,ff,&add_ffs);
for (int i = 0; i < add_ffs.size(); ++i) {
pffs.push_back(make_ff(add_ffs[i],verbose_feature_functions));
FeatureFunction const* p=pffs.back().get();
rp.ffs.push_back(p);
if (p->IsStateful()) { has_stateful = true; }
}
}
if (conf.count(sf)) {
rp.fid_summary = FD::Convert(conf[sf].as<string>());
assert(rp.fid_summary > 0);
// TODO assert that weights for this pass have coef(fid_summary) == 0.0?
}
if (conf.count(bp)) { rp.beam_prune = conf[bp].as<double>(); }
if (conf.count(dp)) { rp.density_prune = conf[dp].as<double>(); }
int palg = (has_stateful ? 1 : 0); // if there are no stateful featueres, default to FULL
string isn = "intersection_strategy" + StringSuffixForRescoringPass(pass);
string spl = "cubepruning_pop_limit" + StringSuffixForRescoringPass(pass);
unsigned pop_limit = 200;
if (conf.count(spl)) { pop_limit = conf[spl].as<unsigned>(); }
if (LowercaseString(str(isn.c_str(),conf)) == "full") {
palg = 0;
}
if (LowercaseString(conf["intersection_strategy"].as<string>()) == "fast_cube_pruning") {
palg = 2;
cerr << "Using Fast Cube Pruning intersection (see Algorithm 2 described in: Gesmundo A., Henderson J,. Faster Cube Pruning, IWSLT 2010).\n";
}
if (LowercaseString(conf["intersection_strategy"].as<string>()) == "fast_cube_pruning_2") {
palg = 3;
cerr << "Using Fast Cube Pruning 2 intersection (see Algorithm 3 described in: Gesmundo A., Henderson J,. Faster Cube Pruning, IWSLT 2010).\n";
}
rp.inter_conf.reset(new IntersectionConfiguration(palg, pop_limit));
} else {
break; // TODO alert user if there are any future configurations
}
}
// set up weight vectors since later phases may reuse weights from earlier phases
boost::shared_ptr<vector<weight_t> > prev_weights = init_weights;
for (int pass = 0; pass < rescoring_passes.size(); ++pass) {
RescoringPass& rp = rescoring_passes[pass];
if (!rp.weight_vector) {
rp.weight_vector = prev_weights;
} else {
prev_weights = rp.weight_vector;
}
rp.models.reset(new ModelSet(*rp.weight_vector, rp.ffs));
}
// show configuration of rescoring passes
if (!SILENT) {
int num = rescoring_passes.size();
cerr << "Configured " << num << " rescoring pass" << (num == 1 ? "" : "es") << endl;
for (int pass = 0; pass < num; ++pass)
cerr << " " << rescoring_passes[pass] << endl;
}
bool warn0=conf.count("warn_0_weight");
bool freeze=conf.count("freeze_feature_set");
bool early_freeze=freeze && !warn0;
bool late_freeze=freeze && warn0;
if (early_freeze) {
cerr << "Freezing feature set" << endl;
FD::Freeze(); // this means we can't see the feature names of not-weighted features
}
// set up translation back end
if (formalism == "scfg")
translator.reset(new SCFGTranslator(conf));
else if (formalism == "t2s")
translator.reset(new Tree2StringTranslator(conf, false));
else if (formalism == "t2t")
translator.reset(new Tree2StringTranslator(conf, true));
else if (formalism == "fst")
translator.reset(new FSTTranslator(conf));
else if (formalism == "pb")
translator.reset(new PhraseBasedTranslator(conf));
else if (formalism == "csplit")
translator.reset(new CompoundSplit(conf));
else if (formalism == "lextrans")
translator.reset(new LexicalTrans(conf));
else if (formalism == "lexalign")
translator.reset(new LexicalAlign(conf));
else if (formalism == "rescore")
translator.reset(new RescoreTranslator(conf));
else if (formalism == "tagger")
translator.reset(new Tagger(conf));
else
assert(!"error");
if (late_freeze) {
cerr << "Late freezing feature set (use --no_freeze_feature_set to prevent)." << endl;
FD::Freeze(); // this means we can't see the feature names of not-weighted features
}
sample_max_trans = conf.count("max_translation_sample") ?
conf["max_translation_sample"].as<int>() : 0;
if (sample_max_trans)
rng.reset(new RandomNumberGenerator<boost::mt19937>);
aligner_mode = conf.count("aligner");
graphviz = conf.count("graphviz");
joshua_viz = conf.count("show_joshua_visualization");
encode_b64 = str("vector_format",conf) == "b64";
kbest = conf.count("k_best");
unique_kbest = conf.count("unique_k_best");
get_oracle_forest = conf.count("get_oracle_forest");
oracle.show_derivation=conf.count("show_derivations");
oracle.show_derivation_mask=conf["show_derivations_mask"].as<int>();
remove_intersected_rule_annotations = conf.count("remove_intersected_rule_annotations");
combine_size = conf["combine_size"].as<int>();
if (combine_size < 1) combine_size = 1;
sent_id = -1;
acc_obj = 0; // accumulate objective
g_count = 0; // number of gradient pieces computed
if (conf.count("incremental_search")) {
incremental.reset(IncrementalBase::Load(conf["incremental_search"].as<string>().c_str(), CurrentWeightVector()));
}
}
Decoder::Decoder(istream* cfg) { pimpl_.reset(new DecoderImpl(conf,0,0,cfg)); }
Decoder::Decoder(int argc, char** argv) { pimpl_.reset(new DecoderImpl(conf,argc, argv, 0)); }
Decoder::~Decoder() {}
void Decoder::SetId(int next_sent_id) { pimpl_->SetId(next_sent_id); }
bool Decoder::Decode(const string& input, DecoderObserver* o) {
bool del = false;
if (!o) { o = new DecoderObserver; del = true; }
const bool res = pimpl_->Decode(input, o);
if (del) delete o;
return res;
}
vector<weight_t>& Decoder::CurrentWeightVector() { return pimpl_->CurrentWeightVector(); }
const vector<weight_t>& Decoder::CurrentWeightVector() const { return pimpl_->CurrentWeightVector(); }
void Decoder::AddSupplementalGrammar(GrammarPtr gp) {
static_cast<SCFGTranslator&>(*pimpl_->translator).AddSupplementalGrammar(gp);
}
void Decoder::AddSupplementalGrammarFromString(const std::string& grammar_string) {
assert(pimpl_->translator->GetDecoderType() == "SCFG");
static_cast<SCFGTranslator&>(*pimpl_->translator).AddSupplementalGrammarFromString(grammar_string);
}
bool DecoderImpl::Decode(const string& input, DecoderObserver* o) {
string buf = input;
NgramCache::Clear(); // clear ngram cache for remote LM (if used)
Timer::Summarize();
++sent_id;
map<string, string> sgml;
ProcessAndStripSGML(&buf, &sgml);
if (sgml.find("id") != sgml.end())
sent_id = atoi(sgml["id"].c_str());
if (!SILENT) {
cerr << "\nINPUT: ";
if (buf.size() < 100)
cerr << buf << endl;
else {
size_t x = buf.rfind(" ", 100);
if (x == string::npos) x = 100;
cerr << buf.substr(0, x) << " ..." << endl;
}
cerr << " id = " << sent_id << endl;
}
if (conf.count("extract_rules")) {
stringstream ss;
ss << sent_id << ".gz";
extract_file.reset(new WriteFile(str("extract_rules",conf)+"/"+ss.str()));
}
string to_translate;
Lattice ref;
ParseTranslatorInputLattice(buf, &to_translate, &ref);
const unsigned srclen=NTokens(to_translate,' ');
//FIXME: should get the avg. or max source length of the input lattice (like Lattice::dist_(start,end)); but this is only used to scale beam parameters (optionally) anyway so fidelity isn't important.
const bool has_ref = ref.size() > 0;
SentenceMetadata smeta(sent_id, ref);
smeta.sgml_.swap(sgml);
o->NotifyDecodingStart(smeta);
Hypergraph forest; // -LM forest
translator->ProcessMarkupHints(smeta.sgml_);
Timer t("Translation");
const bool translation_successful =
translator->Translate(to_translate, &smeta, *init_weights, &forest);
translator->SentenceComplete();
if (!translation_successful) {
if (!SILENT) { cerr << " NO PARSE FOUND.\n"; }
o->NotifySourceParseFailure(smeta);
o->NotifyDecodingComplete(smeta);
if (conf.count("show_conditional_prob")) {
cout << "-Inf" << endl << flush;
} else if (!SILENT) {
cout << endl;
}
return false;
}
// this is mainly used for debugging, eventually this will be an assertion
if (!forest.AreNodesUniquelyIdentified()) {
if (!SILENT) cerr << " *** NODES NOT UNIQUELY IDENTIFIED ***\n";
}
if (!forest.ArePreGoalEdgesArity1()) {
cerr << "Pre-goal edges are not arity-1. The decoder requires this.\n";
abort();
}
const bool show_tree_structure=conf.count("show_tree_structure");
if (!SILENT) forest_stats(forest," Init. forest",show_tree_structure,oracle.show_derivation);
if (conf.count("show_expected_length")) {
const PRPair<prob_t, prob_t> res =
Inside<PRPair<prob_t, prob_t>,
PRWeightFunction<prob_t, EdgeProb, prob_t, ELengthWeightFunction> >(forest);
cerr << " Expected length (words): " << (res.r / res.p).as_float() << "\t" << res << endl;
}
if (conf.count("show_partition")) {
const prob_t z = Inside<prob_t, EdgeProb>(forest);
cerr << " Partition log(Z): " << log(z) << endl;
}
SummaryFeature summary_feature_type = kNODE_RISK;
if (conf["summary_feature_type"].as<string>() == "edge_risk")
summary_feature_type = kEDGE_RISK;
else if (conf["summary_feature_type"].as<string>() == "node_risk")
summary_feature_type = kNODE_RISK;
else if (conf["summary_feature_type"].as<string>() == "edge_prob")
summary_feature_type = kEDGE_PROB;
else {
cerr << "Bad summary_feature_type: " << conf["summary_feature_type"].as<string>() << endl;
abort();
}
if (conf.count("show_target_graph")) {
HypergraphIO::WriteTarget(conf["show_target_graph"].as<string>(), sent_id, forest);
}
if (conf.count("incremental_search")) {
incremental->Search(conf["cubepruning_pop_limit"].as<unsigned>(), forest);
}
if (conf.count("show_target_graph") || conf.count("incremental_search")) {
o->NotifyDecodingComplete(smeta);
return true;
}
for (int pass = 0; pass < rescoring_passes.size(); ++pass) {
const RescoringPass& rp = rescoring_passes[pass];
const vector<weight_t>& cur_weights = *rp.weight_vector;
if (!SILENT) cerr << endl << " RESCORING PASS #" << (pass+1) << " " << rp << endl;
string passtr = "Pass1"; passtr[4] += pass;
forest.Reweight(cur_weights);
const bool has_rescoring_models = !rp.models->empty();
if (has_rescoring_models) {
Timer t("Forest rescoring:");
rp.models->PrepareForInput(smeta);
Hypergraph rescored_forest;
#ifdef CP_TIME
CpTime::Sub(clock());
#endif
ApplyModelSet(forest,
smeta,
*rp.models,
*rp.inter_conf,
&rescored_forest);
#ifdef CP_TIME
CpTime::Add(clock());
#endif
forest.swap(rescored_forest);
forest.Reweight(cur_weights);
if (!SILENT) forest_stats(forest," " + passtr +" forest",show_tree_structure,oracle.show_derivation, conf.count("extract_rules"), extract_file);
// this is mainly used for debugging, eventually this will be an assertion
if (!forest.AreNodesUniquelyIdentified()) {
if (!SILENT) cerr << " *** NODES NOT UNIQUELY IDENTIFIED ***\n";
}
}
if (conf.count("show_partition")) {
const prob_t z = Inside<prob_t, EdgeProb>(forest);
cerr << " " << passtr << " partition log(Z): " << log(z) << endl;
}
if (rp.fid_summary) {
if (summary_feature_type == kEDGE_PROB) {
const prob_t z = forest.PushWeightsToGoal(1.0);
if (!std::isfinite(log(z)) || std::isnan(log(z))) {
cerr << " " << passtr << " !!! Invalid partition detected, abandoning.\n";
} else {
for (int i = 0; i < forest.edges_.size(); ++i) {
const double log_prob_transition = log(forest.edges_[i].edge_prob_); // locally normalized by the edge
// head node by forest.PushWeightsToGoal
if (!std::isfinite(log_prob_transition) || std::isnan(log_prob_transition)) {
cerr << "Edge: i=" << i << " got bad inside prob: " << *forest.edges_[i].rule_ << endl;
abort();
}
forest.edges_[i].feature_values_.set_value(rp.fid_summary, log_prob_transition);
}
forest.Reweight(cur_weights); // reset weights
}
} else if (summary_feature_type == kNODE_RISK) {
Hypergraph::EdgeProbs posts;
const prob_t z = forest.ComputeEdgePosteriors(1.0, &posts);
if (!std::isfinite(log(z)) || std::isnan(log(z))) {
cerr << " " << passtr << " !!! Invalid partition detected, abandoning.\n";
} else {
for (int i = 0; i < forest.nodes_.size(); ++i) {
const Hypergraph::EdgesVector& in_edges = forest.nodes_[i].in_edges_;
prob_t node_post = prob_t(0);
for (int j = 0; j < in_edges.size(); ++j)
node_post += (posts[in_edges[j]] / z);
const double log_np = log(node_post);
if (!std::isfinite(log_np) || std::isnan(log_np)) {
cerr << "got bad posterior prob for node " << i << endl;
abort();
}
for (int j = 0; j < in_edges.size(); ++j)
forest.edges_[in_edges[j]].feature_values_.set_value(rp.fid_summary, exp(log_np));
// Hypergraph::Edge& example_edge = forest.edges_[in_edges[0]];
// string n = "NONE";
// if (forest.nodes_[i].cat_) n = TD::Convert(-forest.nodes_[i].cat_);
// cerr << "[" << n << "," << example_edge.i_ << "," << example_edge.j_ << "] = " << exp(log_np) << endl;
}
}
} else if (summary_feature_type == kEDGE_RISK) {
Hypergraph::EdgeProbs posts;
const prob_t z = forest.ComputeEdgePosteriors(1.0, &posts);
if (!std::isfinite(log(z)) || std::isnan(log(z))) {
cerr << " " << passtr << " !!! Invalid partition detected, abandoning.\n";
} else {
assert(posts.size() == forest.edges_.size());
for (int i = 0; i < posts.size(); ++i) {
const double log_np = log(posts[i] / z);
if (!std::isfinite(log_np) || std::isnan(log_np)) {
cerr << "got bad posterior prob for node " << i << endl;
abort();
}
forest.edges_[i].feature_values_.set_value(rp.fid_summary, exp(log_np));
}
}
} else {
assert(!"shouldn't happen");
}
}
string fullbp = "beam_prune" + StringSuffixForRescoringPass(pass);
string fulldp = "density_prune" + StringSuffixForRescoringPass(pass);
maybe_prune(forest,conf,fullbp.c_str(),fulldp.c_str(),passtr,srclen);
}
const vector<double>& last_weights = (rescoring_passes.empty() ? *init_weights : *rescoring_passes.back().weight_vector);
// Oracle Rescoring
if(get_oracle_forest) {
assert(!"this is broken"); SparseVector<double> dummy; // = last_weights
Oracle oc=oracle.ComputeOracle(smeta,&forest,dummy,10,conf["forest_output"].as<std::string>());
if (!SILENT) cerr << " +Oracle BLEU forest (nodes/edges): " << forest.nodes_.size() << '/' << forest.edges_.size() << endl;
if (!SILENT) cerr << " +Oracle BLEU (paths): " << forest.NumberOfPaths() << endl;
oc.hope.Print(cerr," +Oracle BLEU");
oc.fear.Print(cerr," -Oracle BLEU");
//Add 1-best translation (trans) to psuedo-doc vectors
if (!SILENT) oracle.IncludeLastScore(&cerr);
}
o->NotifyTranslationForest(smeta, &forest);
// TODO I think this should probably be handled by an Observer
if (conf.count("forest_output") && !has_ref) {
ForestWriter writer(str("forest_output",conf), sent_id);
if (FileExists(writer.fname_)) {
if (!SILENT) cerr << " Unioning...\n";
Hypergraph new_hg;
{
ReadFile rf(writer.fname_);
bool succeeded = HypergraphIO::ReadFromBinary(rf.stream(), &new_hg);
if (!succeeded) abort();
}
HG::Union(forest, &new_hg);
bool succeeded = writer.Write(new_hg);
if (!succeeded) abort();
} else {
bool succeeded = writer.Write(forest);
if (!succeeded) abort();
}
}
// TODO I think this should probably be handled by an Observer
if (sample_max_trans) {
MaxTranslationSample(&forest, sample_max_trans, conf.count("k_best") ? conf["k_best"].as<int>() : 0);
} else {
if (kbest && !has_ref) {
//TODO: does this work properly?
const string deriv_fname = conf.count("show_derivations") ? str("show_derivations",conf) : "-";
oracle.DumpKBest(sent_id, forest, conf["k_best"].as<int>(), unique_kbest,"-", deriv_fname);
} else if (csplit_output_plf) {
cout << HypergraphIO::AsPLF(forest, false) << endl;
} else {
if (!graphviz && !has_ref && !joshua_viz && !SILENT) {
vector<WordID> trans;
ViterbiESentence(forest, &trans);
cout << TD::GetString(trans) << endl << flush;
}
if (joshua_viz) {
cout << sent_id << " ||| " << JoshuaVisualizationString(forest) << " ||| 1.0 ||| " << -1.0 << endl << flush;
}
}
}
prob_t first_z;
if (conf.count("show_conditional_prob")) {
first_z = Inside<prob_t, EdgeProb>(forest);
}
// TODO this should be handled by an Observer
const int max_trans_beam_size = conf.count("max_translation_beam") ?
conf["max_translation_beam"].as<int>() : 0;
if (max_trans_beam_size) {
Hack::MaxTrans(forest, max_trans_beam_size);
return true;
}
// TODO this should be handled by an Observer
if (graphviz && !has_ref) forest.PrintGraphviz();
// the following are only used if write_gradient is true!
SparseVector<prob_t> full_exp, ref_exp, gradient;
double log_z = 0, log_ref_z = 0;
if (write_gradient) {
const prob_t z = InsideOutside<prob_t, EdgeProb, SparseVector<prob_t>, EdgeFeaturesAndProbWeightFunction>(forest, &full_exp);
log_z = log(z);
full_exp /= z;
}
if (conf.count("show_cfg_search_space"))
HypergraphIO::WriteAsCFG(forest);
if (has_ref) {
if (HG::Intersect(ref, &forest)) {
// if (crf_uniform_empirical) {
// if (!SILENT) cerr << " USING UNIFORM WEIGHTS\n";
// for (int i = 0; i < forest.edges_.size(); ++i)
// forest.edges_[i].edge_prob_=prob_t::One(); }
if (remove_intersected_rule_annotations) {
for (unsigned i = 0; i < forest.edges_.size(); ++i)
if (forest.edges_[i].rule_ &&
forest.edges_[i].rule_->parent_rule_)
forest.edges_[i].rule_ = forest.edges_[i].rule_->parent_rule_;
}
forest.Reweight(last_weights);
// this is mainly used for debugging, eventually this will be an assertion
if (!forest.AreNodesUniquelyIdentified()) {
if (!SILENT) cerr << " *** NODES NOT UNIQUELY IDENTIFIED ***\n";
}
if (!SILENT) forest_stats(forest," Constr. forest",show_tree_structure,oracle.show_derivation);
if (!SILENT) cerr << " Constr. VitTree: " << ViterbiFTree(forest) << endl;
if (conf.count("show_partition")) {
const prob_t z = Inside<prob_t, EdgeProb>(forest);
cerr << " Contst. partition log(Z): " << log(z) << endl;
}
o->NotifyAlignmentForest(smeta, &forest);
if (conf.count("show_cfg_alignment_space"))
HypergraphIO::WriteAsCFG(forest);
if (conf.count("forest_output")) {
ForestWriter writer(str("forest_output",conf), sent_id);
if (FileExists(writer.fname_)) {
if (!SILENT) cerr << " Unioning...\n";
Hypergraph new_hg;
{
ReadFile rf(writer.fname_);
bool succeeded = HypergraphIO::ReadFromBinary(rf.stream(), &new_hg);
if (!succeeded) abort();
}
HG::Union(forest, &new_hg);
bool succeeded = writer.Write(new_hg);
if (!succeeded) abort();
} else {
bool succeeded = writer.Write(forest);
if (!succeeded) abort();
}
}
if (aligner_mode && !output_training_vector)
AlignerTools::WriteAlignment(smeta.GetSourceLattice(), smeta.GetReference(), forest, &cout, 0 == conf.count("aligner_use_viterbi"), kbest ? conf["k_best"].as<int>() : 0);
if (write_gradient) {
const prob_t ref_z = InsideOutside<prob_t, EdgeProb, SparseVector<prob_t>, EdgeFeaturesAndProbWeightFunction>(forest, &ref_exp);
ref_exp /= ref_z;
// if (crf_uniform_empirical)
// log_ref_z = ref_exp.dot(last_weights);
log_ref_z = log(ref_z);
//cerr << " MODEL LOG Z: " << log_z << endl;
//cerr << " EMPIRICAL LOG Z: " << log_ref_z << endl;
if ((log_z - log_ref_z) < kMINUS_EPSILON) {
cerr << "DIFF. ERR! log_z < log_ref_z: " << log_z << " " << log_ref_z << endl;
exit(1);
}
assert(!std::isnan(log_ref_z));
ref_exp -= full_exp;
acc_vec += ref_exp;
acc_obj += (log_z - log_ref_z);
}
if (feature_expectations) {
const prob_t z =
InsideOutside<prob_t, EdgeProb, SparseVector<prob_t>, EdgeFeaturesAndProbWeightFunction>(forest, &ref_exp);
ref_exp /= z;
acc_obj += log(z);
acc_vec += ref_exp;
}
if (output_training_vector) {
acc_vec.erase(0);
++g_count;
if (g_count % combine_size == 0) {
if (encode_b64) {
cout << "0\t";
SparseVector<double> dav; ConvertSV(acc_vec, &dav);
B64::Encode(acc_obj, dav, &cout);
cout << endl << flush;
} else {
cout << "0\t**OBJ**=" << acc_obj << ';' << acc_vec << endl << flush;
}
acc_vec.clear();
acc_obj = 0;
}
}
if (conf.count("graphviz")) forest.PrintGraphviz();
if (kbest) {
const string deriv_fname = conf.count("show_derivations") ? str("show_derivations",conf) : "-";
oracle.DumpKBest(sent_id, forest, conf["k_best"].as<int>(), unique_kbest,"-", deriv_fname);
}
if (conf.count("show_conditional_prob")) {
const prob_t ref_z = Inside<prob_t, EdgeProb>(forest);
cout << (log(ref_z) - log(first_z)) << endl << flush;
}
} else {
o->NotifyAlignmentFailure(smeta);
if (!SILENT) cerr << " REFERENCE UNREACHABLE.\n";
if (write_gradient) {
cout << endl << flush;
}
if (conf.count("show_conditional_prob")) {
cout << "-Inf" << endl << flush;
}
}
}
o->NotifyDecodingComplete(smeta);
return true;
}
|