1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
|
#include "cfg.h"
#include "hg.h"
#include "cfg_format.h"
#include "cfg_binarize.h"
#include "hash.h"
#include "batched_append.h"
#include <limits>
#include "fast_lexical_cast.hpp"
//#include "indices_after.h"
using namespace std;
typedef CFG::Rule Rule;
typedef CFG::NTOrder NTOrder;
typedef CFG::RHS RHS;
/////index ruleids:
void CFG::UnindexRules() {
for (NTs::iterator n=nts.begin(),nn=nts.end();n!=nn;++n)
n->ruleids.clear();
}
void CFG::ReindexRules() {
UnindexRules();
for (int i=0,e=rules.size();i<e;++i)
if (!rules[i].is_null())
nts[rules[i].lhs].ruleids.push_back(i);
}
//////topo order:
namespace {
typedef std::vector<char> Seen; // 0 = unseen, 1 = seen+finished, 2 = open (for cycle detection; seen but not finished)
enum { UNSEEN=0,SEEN,OPEN };
// bottom -> top topo order (rev head->tails topo)
template <class OutOrder>
struct CFGTopo {
// meaningless efficiency alternative: close over all the args except ni - so they're passed as a single pointer. also makes visiting tail_nts simpler.
CFG const& cfg;
OutOrder outorder;
std::ostream *cerrp;
CFGTopo(CFG const& cfg,OutOrder const& outorder,std::ostream *cerrp=&std::cerr)
: cfg(cfg),outorder(outorder),cerrp(cerrp) // closure over args
, seen(cfg.nts.size()) { }
Seen seen;
void operator()(CFG::NTHandle ni) {
char &seenthis=seen[ni];
if (seenthis==UNSEEN) {
seenthis=OPEN;
CFG::NT const& nt=cfg.nts[ni];
for (CFG::Ruleids::const_iterator i=nt.ruleids.begin(),e=nt.ruleids.end();i!=e;++i) {
Rule const& r=cfg.rules[*i];
r.visit_rhs_nts(*this); // recurse.
}
*outorder++=ni; // dfs finishing time order = reverse topo.
seenthis=SEEN;
} else if (cerrp && seenthis==OPEN) {
std::ostream &cerr=*cerrp;
cerr<<"WARNING: CFG Topo order attempt failed: NT ";
cfg.print_nt_name(cerr,ni);
cerr<<" already reached from goal(top) ";
cfg.print_nt_name(cerr,cfg.goal_nt);
cerr<<". Continuing to reorder, but it's not fully topological.\n";
}
}
};
template <class O>
void DoCFGTopo(CFG const& cfg,CFG::NTHandle goal,O const& o,std::ostream *w=0) {
CFGTopo<O> ct(cfg,o,w);
ct(goal);
}
}//ns
// you would need to do this only if you didn't build from hg, or you Binarize without bin_topo option. note: this doesn't sort the list of rules; it's assumed that if you care about the topo order you'll iterate over nodes.
void CFG::OrderNTsTopo(NTOrder *o_,std::ostream *cycle_complain) {
NTOrder &o=*o_;
o.resize(nts.size());
DoCFGTopo(*this,goal_nt,o.begin(),cycle_complain);
}
/////sort/uniq:
namespace {
RHS null_rhs(1,INT_MIN);
//sort
struct ruleid_best_first {
CFG::Rules const* rulesp;
bool operator()(int a,int b) const { // true if a >(prob for ruleid) b
return (*rulesp)[b].p < (*rulesp)[a].p;
}
};
//uniq
struct prob_pos {
prob_pos() {}
prob_pos(prob_t prob,int pos) : prob(prob),pos(pos) {}
prob_t prob;
int pos;
bool operator <(prob_pos const& o) const { return prob<o.prob; }
};
}//ns
void CFG::UniqRules(NTHandle ni) {
typedef HASH_MAP<RHS,prob_pos,boost::hash<RHS> > BestRHS; // faster to use trie? maybe.
BestRHS bestp; // once inserted, the position part (output index) never changes. but the prob may be improved (overwrite ruleid at that position).
HASH_MAP_EMPTY(bestp,null_rhs);
Ruleids &adj=nts[ni].ruleids;
Ruleids oldadj=adj;
int oi=0;
for (int i=0,e=oldadj.size();i!=e;++i) { // this beautiful complexity is to ensure that adj' is a subsequence of adj (without duplicates)
int ri=oldadj[i];
Rule const& r=rules[ri];
prob_pos pi(r.p,oi);
prob_pos &oldpi=get_default(bestp,r.rhs,pi);
if (oldpi.pos==oi) {// newly inserted
adj[oi++]=ri;
} else if (oldpi.prob<pi.prob) { // we improve prev. best (overwrite it @old pos)
oldpi.prob=pi.prob;
adj[oldpi.pos]=ri; // replace worse rule w/ better
}
}
// post: oi = number of new adj
adj.resize(oi);
}
void CFG::SortLocalBestFirst(NTHandle ni) {
ruleid_best_first r;
r.rulesp=&rules;
Ruleids &adj=nts[ni].ruleids;
std::stable_sort(adj.begin(),adj.end(),r);
}
/////binarization:
namespace {
CFG::BinRhs null_bin_rhs(std::numeric_limits<int>::min(),std::numeric_limits<int>::min());
// index i >= N.size()? then it's in M[i-N.size()]
WordID BinName(CFG::BinRhs const& b,CFG::NTs const& N,CFG::NTs const& M)
{
int nn=N.size();
ostringstream o;
#define BinNameOWORD(w) \
do { \
int n=w; if (n>0) o << TD::Convert(n); \
else { \
int i=-n; \
if (i<nn) o<<N[i].from<<i; else o<<M[i-nn].from; \
} \
} while(0)
BinNameOWORD(b.first);
o<<'+';
BinNameOWORD(b.second);
#undef BinNameOWORD
return TD::Convert(o.str());
}
}//ns
void CFG::Binarize(CFGBinarize const& b) {
if (!b.Binarizing()) return;
if (!b.bin_l2r) {
assert(b.bin_l2r);
return;
}
//TODO: l2r only so far:
cerr << "Binarizing "<<b<<endl;
HASH_MAP<BinRhs,NTHandle,boost::hash<BinRhs> > bin2lhs; // we're going to hash cons rather than build an explicit trie from right to left.
HASH_MAP_EMPTY(bin2lhs,null_bin_rhs);
int rhsmin=b.bin_unary?0:1;
// iterate using indices and not iterators because we'll be adding to both nts and rules list? we could instead pessimistically reserve space for both, but this is simpler. also: store original end of nts since we won't need to reprocess newly added ones.
NTs new_nts; // these will be appended at the end, so we don't have to worry about iterator invalidation
Rules new_rules;
//TODO: this could be factored easily into in-place (append to new_* like below) and functional (nondestructive copy) versions (copy orig to target and append to target)
int newnt=nts.size();
int newruleid=rules.size();
BinRhs bin;
for (NTs::const_iterator n=nts.begin(),nn=nts.end();n!=nn;++n) {
NT const& nt=*n;
for (Ruleids::const_iterator ir=nt.ruleids.begin(),er=nt.ruleids.end();ir!=er;++ir) {
RHS &rhs=rules[*ir].rhs; // we're going to binarize this while adding newly created rules to new_...
if (rhs.empty()) continue;
bin.second=rhs.back();
for (int r=rhs.size()-2;r>=rhsmin;--r) { // pairs from right to left (normally we leave the last pair alone)
rhs.pop_back();
bin.first=rhs[r];
if (newnt==(bin.second=(get_default(bin2lhs,bin,newnt)))) {
new_nts.push_back(NT());
new_nts.back().ruleids.push_back(newruleid);
new_rules.push_back(Rule(newnt,bin));
if (b.bin_name_nts)
new_nts.back().from.nt=BinName(bin,nts,new_nts);
++newnt;++newruleid;
}
}
}
}
batched_append_swap(nts,new_nts);
batched_append_swap(rules,new_rules);
if (b.bin_topo) //TODO: more efficient (at least for l2r) maintenance of order
OrderNTsTopo();
}
namespace {
inline int nt_index(int nvar,Hypergraph::TailNodeVector const& t,bool target_side,int w) {
assert(w<0 || (target_side&&w==0));
return t[target_side?-w:nvar];
}
}
void CFG::Init(Hypergraph const& hg,bool target_side,bool copy_features,bool push_weights) {
uninit=false;
hg_=&hg;
Hypergraph::NodeProbs np;
goal_inside=hg.ComputeNodeViterbi(&np);
pushed_inside=push_weights ? goal_inside : prob_t(1);
int nn=hg.nodes_.size(),ne=hg.edges_.size();
nts.resize(nn);
goal_nt=nn-1;
rules.resize(ne);
for (int i=0;i<nn;++i) {
nts[i].ruleids=hg.nodes_[i].in_edges_;
hg.SetNodeOrigin(i,nts[i].from);
}
for (int i=0;i<ne;++i) {
Rule &cfgr=rules[i];
Hypergraph::Edge const& e=hg.edges_[i];
prob_t &crp=cfgr.p;
crp=e.edge_prob_;
cfgr.lhs=e.head_node_;
#if CFG_DEBUG
cfgr.rule=e.rule_;
#endif
if (copy_features) cfgr.f=e.feature_values_;
if (push_weights) crp /=np[e.head_node_];
TRule const& er=*e.rule_;
vector<WordID> const& rule_rhs=target_side?er.e():er.f();
int nr=rule_rhs.size();
RHS &rhs_out=cfgr.rhs;
rhs_out.resize(nr);
Hypergraph::TailNodeVector const& tails=e.tail_nodes_;
int nvar=0;
//split out into separate target_side, source_side loops?
for (int j=0;j<nr;++j) {
WordID w=rule_rhs[j];
if (w>0)
rhs_out[j]=w;
else {
int n=nt_index(nvar,tails,target_side,w);
++nvar;
if (push_weights) crp*=np[n];
rhs_out[j]=-n;
}
}
assert(nvar==er.Arity());
assert(nvar==tails.size());
}
}
void CFG::Clear() {
rules.clear();
nts.clear();
goal_nt=-1;
hg_=0;
}
void CFG::PrintRule(std::ostream &o,RuleHandle rulei,CFGFormat const& f) const {
Rule const& r=rules[rulei];
f.print_lhs(o,*this,r.lhs);
f.print_rhs(o,*this,r.rhs.begin(),r.rhs.end());
f.print_features(o,r.p,r.f);
#if CFG_DEBUG
if (r.rule) o<<f.partsep<<*r.rule;
#endif
}
void CFG::Print(std::ostream &o,CFGFormat const& f) const {
assert(!uninit);
if (!f.goal_nt_name.empty()) {
o << '['<<f.goal_nt_name <<']';
WordID rhs=-goal_nt;
f.print_rhs(o,*this,&rhs,&rhs+1);
if (pushed_inside!=1)
f.print_features(o,pushed_inside);
o<<'\n';
}
for (int i=0;i<nts.size();++i) {
Ruleids const& ntr=nts[i].ruleids;
for (Ruleids::const_iterator j=ntr.begin(),jj=ntr.end();j!=jj;++j) {
PrintRule(o,*j,f);
o<<'\n';
}
}
}
|