summaryrefslogtreecommitdiff
path: root/decoder/cdec.cc
blob: 140fe8e47627c2f80e2720ba9794cda842bcd21a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
#include <iostream>
#include <fstream>
#include <tr1/unordered_map>
#include <tr1/unordered_set>

#include <boost/shared_ptr.hpp>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>

#include "timing_stats.h"
#include "translator.h"
#include "phrasebased_translator.h"
#include "aligner.h"
#include "stringlib.h"
#include "forest_writer.h"
#include "hg_io.h"
#include "filelib.h"
#include "sampler.h"
#include "sparse_vector.h"
#include "tagger.h"
#include "lextrans.h"
#include "lexalign.h"
#include "csplit.h"
#include "weights.h"
#include "tdict.h"
#include "ff.h"
#include "ff_factory.h"
#include "hg_intersect.h"
#include "apply_models.h"
#include "viterbi.h"
#include "kbest.h"
#include "inside_outside.h"
#include "exp_semiring.h"
#include "sentence_metadata.h"

using namespace std;
using namespace std::tr1;
using boost::shared_ptr;
namespace po = boost::program_options;

bool verbose_feature_functions=true;

// some globals ...
boost::shared_ptr<RandomNumberGenerator<boost::mt19937> > rng;
static const double kMINUS_EPSILON = -1e-6;  // don't be too strict

namespace Hack { void MaxTrans(const Hypergraph& in, int beam_size); }
namespace NgramCache { void Clear(); }

void ShowBanner() {
  cerr << "cdec v1.0 (c) 2009-2010 by Chris Dyer\n";
}

void ConvertSV(const SparseVector<prob_t>& src, SparseVector<double>* trg) {
  for (SparseVector<prob_t>::const_iterator it = src.begin(); it != src.end(); ++it)
    trg->set_value(it->first, it->second);
}

void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
  po::options_description opts("Configuration options");
  opts.add_options()
        ("formalism,f",po::value<string>(),"Decoding formalism; values include SCFG, FST, PB, LexTrans (lexical translation model, also disc training), CSplit (compound splitting), Tagger (sequence labeling), LexAlign (alignment only, or EM training)")
        ("input,i",po::value<string>()->default_value("-"),"Source file")
        ("grammar,g",po::value<vector<string> >()->composing(),"Either SCFG grammar file(s) or phrase tables file(s)")
        ("weights,w",po::value<string>(),"Feature weights file")
    ("prelm_weights",po::value<string>(),"Feature weights file for prelm_beam_prune.  Requires --weights.")
    ("prelm_copy_weights","use --weights as value for --prelm_weights.")
    ("keep_prelm_cube_order","when forest rescoring with final models, use the edge ordering from the prelm pruning features*weights.  only meaningful if --prelm_weights given.  UNTESTED but assume that cube pruning gives a sensible result, and that 'good' (as tuned for bleu w/ prelm features) edges come first.")

        ("no_freeze_feature_set,Z", "Do not freeze feature set after reading feature weights file")
        ("feature_function,F",po::value<vector<string> >()->composing(), "Additional feature function(s) (-L for list)")
        ("list_feature_functions,L","List available feature functions")
        ("add_pass_through_rules,P","Add rules to translate OOV words as themselves")
	("k_best,k",po::value<int>(),"Extract the k best derivations")
	("unique_k_best,r", "Unique k-best translation list")
        ("aligner,a", "Run as a word/phrase aligner (src & ref required)")
        ("intersection_strategy,I",po::value<string>()->default_value("cube_pruning"), "Intersection strategy for incorporating finite-state features; values include Cube_pruning, Full")
        ("cubepruning_pop_limit,K",po::value<int>()->default_value(200), "Max number of pops from the candidate heap at each node")
        ("goal",po::value<string>()->default_value("S"),"Goal symbol (SCFG & FST)")
        ("scfg_extra_glue_grammar", po::value<string>(), "Extra glue grammar file (Glue grammars apply when i=0 but have no other span restrictions)")
        ("scfg_no_hiero_glue_grammar,n", "No Hiero glue grammar (nb. by default the SCFG decoder adds Hiero glue rules)")
        ("scfg_default_nt,d",po::value<string>()->default_value("X"),"Default non-terminal symbol in SCFG")
        ("scfg_max_span_limit,S",po::value<int>()->default_value(10),"Maximum non-terminal span limit (except \"glue\" grammar)")
        ("show_joshua_visualization,J", "Produce output compatible with the Joshua visualization tools")
        ("show_tree_structure", "Show the Viterbi derivation structure")
        ("show_expected_length", "Show the expected translation length under the model")
        ("show_partition,z", "Compute and show the partition (inside score)")
        ("show_cfg_search_space", "Show the search space as a CFG")
    ("show_features","Show the feature vector for the viterbi translation")
    ("prelm_density_prune", po::value<double>(), "Applied to -LM forest just before final LM rescoring: keep no more than this many times the number of edges used in the best derivation tree (>=1.0)")
    ("density_prune", po::value<double>(), "Keep no more than this many times the number of edges used in the best derivation tree (>=1.0)")
        ("prelm_beam_prune", po::value<double>(), "Prune paths from -LM forest before LM rescoring, keeping paths within exp(alpha>=0)")
        ("beam_prune", po::value<double>(), "Prune paths from +LM forest, keep paths within exp(alpha>=0)")
    ("scale_prune_srclen", "scale beams by the input length (in # of tokens; may not be what you want for lattices")
        ("lexalign_use_null", "Support source-side null words in lexical translation")
        ("tagger_tagset,t", po::value<string>(), "(Tagger) file containing tag set")
        ("csplit_output_plf", "(Compound splitter) Output lattice in PLF format")
        ("csplit_preserve_full_word", "(Compound splitter) Always include the unsegmented form in the output lattice")
        ("extract_rules", po::value<string>(), "Extract the rules used in translation (de-duped) to this file")
        ("graphviz","Show (constrained) translation forest in GraphViz format")
        ("max_translation_beam,x", po::value<int>(), "Beam approximation to get max translation from the chart")
        ("max_translation_sample,X", po::value<int>(), "Sample the max translation from the chart")
        ("pb_max_distortion,D", po::value<int>()->default_value(4), "Phrase-based decoder: maximum distortion")
        ("cll_gradient,G","Compute conditional log-likelihood gradient and write to STDOUT (src & ref required)")
        ("crf_uniform_empirical", "If there are multple references use (i.e., lattice) a uniform distribution rather than posterior weighting a la EM")
        ("feature_expectations","Write feature expectations for all features in chart (**OBJ** will be the partition)")
        ("vector_format",po::value<string>()->default_value("b64"), "Sparse vector serialization format for feature expectations or gradients, includes (text or b64)")
        ("combine_size,C",po::value<int>()->default_value(1), "When option -G is used, process this many sentence pairs before writing the gradient (1=emit after every sentence pair)")
        ("forest_output,O",po::value<string>(),"Directory to write forests to")
        ("minimal_forests,m","Write minimal forests (excludes Rule information). Such forests can be used for ML/MAP training, but not rescoring, etc.");
  po::options_description clo("Command line options");
  clo.add_options()
        ("config,c", po::value<string>(), "Configuration file")
        ("help,h", "Print this help message and exit");
  po::options_description dconfig_options, dcmdline_options;
  dconfig_options.add(opts);
  dcmdline_options.add(opts).add(clo);

  po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
  if (conf->count("config")) {
    const string cfg = (*conf)["config"].as<string>();
    cerr << "Configuration file: " << cfg << endl;
    ifstream config(cfg.c_str());
    po::store(po::parse_config_file(config, dconfig_options), *conf);
  }
  po::notify(*conf);

  if (conf->count("list_feature_functions")) {
    cerr << "Available feature functions (specify with -F):\n";
    global_ff_registry->DisplayList();
    cerr << endl;
    exit(1);
  }

  if (conf->count("help") || conf->count("formalism") == 0) {
    cerr << dcmdline_options << endl;
    exit(1);
  }

  const string formalism = LowercaseString((*conf)["formalism"].as<string>());
  if (formalism != "scfg" && formalism != "fst" && formalism != "lextrans" && formalism != "pb" && formalism != "csplit" && formalism != "tagger" && formalism != "lexalign") {
    cerr << "Error: --formalism takes only 'scfg', 'fst', 'pb', 'csplit', 'lextrans', 'lexalign', or 'tagger'\n";
    cerr << dcmdline_options << endl;
    exit(1);
  }
}

// TODO move out of cdec into some sampling decoder file
void SampleRecurse(const Hypergraph& hg, const vector<SampleSet>& ss, int n, vector<WordID>* out) {
  const SampleSet& s = ss[n];
  int i = rng->SelectSample(s);
  const Hypergraph::Edge& edge = hg.edges_[hg.nodes_[n].in_edges_[i]];
  vector<vector<WordID> > ants(edge.tail_nodes_.size());
  for (int j = 0; j < ants.size(); ++j)
    SampleRecurse(hg, ss, edge.tail_nodes_[j], &ants[j]);

  vector<const vector<WordID>*> pants(ants.size());
  for (int j = 0; j < ants.size(); ++j) pants[j] = &ants[j];
  edge.rule_->ESubstitute(pants, out);
}

struct SampleSort {
  bool operator()(const pair<int,string>& a, const pair<int,string>& b) const {
    return a.first > b.first;
  }
};

// TODO move out of cdec into some sampling decoder file
void MaxTranslationSample(Hypergraph* hg, const int samples, const int k) {
  unordered_map<string, int, boost::hash<string> > m;
  hg->PushWeightsToGoal();
  const int num_nodes = hg->nodes_.size();
  vector<SampleSet> ss(num_nodes);
  for (int i = 0; i < num_nodes; ++i) {
    SampleSet& s = ss[i];
    const vector<int>& in_edges = hg->nodes_[i].in_edges_;
    for (int j = 0; j < in_edges.size(); ++j) {
      s.add(hg->edges_[in_edges[j]].edge_prob_);
    }
  }
  for (int i = 0; i < samples; ++i) {
    vector<WordID> yield;
    SampleRecurse(*hg, ss, hg->nodes_.size() - 1, &yield);
    const string trans = TD::GetString(yield);
    ++m[trans];
  }
  vector<pair<int, string> > dist;
  for (unordered_map<string, int, boost::hash<string> >::iterator i = m.begin();
         i != m.end(); ++i) {
    dist.push_back(make_pair(i->second, i->first));
  }
  sort(dist.begin(), dist.end(), SampleSort());
  if (k) {
    for (int i = 0; i < k; ++i)
      cout << dist[i].first << " ||| " << dist[i].second << endl;
  } else {
    cout << dist[0].second << endl;
  }
}

// TODO decoder output should probably be moved to another file
void DumpKBest(const int sent_id, const Hypergraph& forest, const int k, const bool unique) {
cerr << "In kbest\n";
 if (unique) {
    KBest::KBestDerivations<vector<WordID>, ESentenceTraversal, KBest::FilterUnique> kbest(forest, k);
    for (int i = 0; i < k; ++i) {
      const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal, KBest::FilterUnique>::Derivation* d =
        kbest.LazyKthBest(forest.nodes_.size() - 1, i);
      if (!d) break;
      cout << sent_id << " ||| " << TD::GetString(d->yield) << " ||| "
           << d->feature_values << " ||| " << log(d->score) << endl;
    }
  } else {
    KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(forest, k);
    for (int i = 0; i < k; ++i) {
      const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d =
        kbest.LazyKthBest(forest.nodes_.size() - 1, i);
      if (!d) break;
      cout << sent_id << " ||| " << TD::GetString(d->yield) << " ||| "
           << d->feature_values << " ||| " << log(d->score) << endl;
    }
  }
}

struct ELengthWeightFunction {
  double operator()(const Hypergraph::Edge& e) const {
    return e.rule_->ELength() - e.rule_->Arity();
  }
};


struct TRPHash {
  size_t operator()(const TRulePtr& o) const { return reinterpret_cast<size_t>(o.get()); }
};
static void ExtractRulesDedupe(const Hypergraph& hg, ostream* os) {
  static unordered_set<TRulePtr, TRPHash> written;
  for (int i = 0; i < hg.edges_.size(); ++i) {
    const TRulePtr& rule = hg.edges_[i].rule_;
    if (written.insert(rule).second) {
      (*os) << rule->AsString() << endl;
    }
  }
}

void register_feature_functions();

bool beam_param(po::variables_map const& conf,string const& name,double *val,bool scale_srclen=false,double srclen=1)
{
  if (conf.count(name)) {
    *val=conf[name].as<double>()*(scale_srclen?srclen:1);
    return true;
  }
  return false;
}

bool prelm_weights_string(po::variables_map const& conf,string &s)
{
  if (conf.count("prelm_weights")) {
    s=conf["prelm_weights"].as<string>();
    return true;
  }
  if (conf.count("prelm_copy_weights")) {
    s=conf["weights"].as<string>();
    return true;
  }
  return false;
}



void forest_stats(Hypergraph &forest,string name,bool show_tree,bool show_features,FeatureWeights *weights=0) {
    cerr << viterbi_stats(forest,name,true,show_tree);
    if (show_features) {
      cerr << name<<"     features: ";
/*      Hypergraph::Edge const* best=forest.ViterbiGoalEdge();
      if (!best)
        cerr << name<<" has no goal edge.";
      else
        cerr<<best->feature_values_;
*/
      cerr << ViterbiFeatures(forest,weights);
      cerr << endl;
    }
}

void maybe_prune(Hypergraph &forest,po::variables_map const& conf,string nbeam,string ndensity,string forestname,double srclen) {
    double beam_prune,density_prune;
    bool use_beam_prune=beam_param(conf,nbeam,&beam_prune,conf.count("scale_prune_srclen"),srclen);
    bool use_density_prune=beam_param(conf,ndensity,&density_prune);
    if (use_beam_prune || use_density_prune) {
      double presize=forest.edges_.size();
      vector<bool> preserve_mask,*pm=0;
      if (conf.count("csplit_preserve_full_word")) {
        preserve_mask.resize(forest.edges_.size());
        preserve_mask[CompoundSplit::GetFullWordEdgeIndex(forest)] = true;
        pm=&preserve_mask;
      }
      if (use_beam_prune)
        forest.BeamPruneInsideOutside(1.0, false, beam_prune, pm);
      if (use_density_prune)
        forest.DensityPruneInsideOutside(1.0 ,false, density_prune, pm);
      if (!forestname.empty()) forestname=" "+forestname;
      forest_stats(forest,"  Pruned "+forestname+" forest",false,false);
      cerr << "  Pruned "<<forestname<<" forest portion of edges kept: "<<forest.edges_.size()/presize<<endl;
    }
}



int main(int argc, char** argv) {
  global_ff_registry.reset(new FFRegistry);
  register_feature_functions();
  ShowBanner();
  po::variables_map conf;
  InitCommandLine(argc, argv, &conf);
  const bool write_gradient = conf.count("cll_gradient");
  const bool feature_expectations = conf.count("feature_expectations");
  if (write_gradient && feature_expectations) {
    cerr << "You can only specify --gradient or --feature_expectations, not both!\n";
    exit(1);
  }
  const bool output_training_vector = (write_gradient || feature_expectations);

  boost::shared_ptr<Translator> translator;
  const string formalism = LowercaseString(conf["formalism"].as<string>());
  const bool csplit_preserve_full_word = conf.count("csplit_preserve_full_word");
  if (csplit_preserve_full_word &&
      (formalism != "csplit" || !(conf.count("beam_prune")||conf.count("density_prune")||conf.count("prelm_beam_prune")||conf.count("prelm_density_prune")))) {
    cerr << "--csplit_preserve_full_word should only be "
         << "used with csplit AND --*_prune!\n";
    exit(1);
  }
  const bool csplit_output_plf = conf.count("csplit_output_plf");
  if (csplit_output_plf && formalism != "csplit") {
    cerr << "--csplit_output_plf should only be used with csplit!\n";
    exit(1);
  }

  // load feature weights (and possibly freeze feature set)
  vector<double> feature_weights,prelm_feature_weights;
  Weights w,prelm_w;
  bool has_prelm_models = false;
  if (conf.count("weights")) {
    w.InitFromFile(conf["weights"].as<string>());
    feature_weights.resize(FD::NumFeats());
    w.InitVector(&feature_weights);
    string plmw;
    if (prelm_weights_string(conf,plmw)) {
      has_prelm_models = true;
      prelm_w.InitFromFile(plmw);
      prelm_feature_weights.resize(FD::NumFeats());
      prelm_w.InitVector(&prelm_feature_weights);
      cerr << "prelm_weights: " << FeatureVector(prelm_feature_weights)<<endl;
    }
    cerr << "+LM weights: " << FeatureVector(feature_weights)<<endl;
    if (!conf.count("no_freeze_feature_set")) {
      cerr << "Freezing feature set (use --no_freeze_feature_set to change)." << endl;
      FD::Freeze();
    }
  }

  // set up translation back end
  if (formalism == "scfg")
    translator.reset(new SCFGTranslator(conf));
  else if (formalism == "fst")
    translator.reset(new FSTTranslator(conf));
  else if (formalism == "pb")
    translator.reset(new PhraseBasedTranslator(conf));
  else if (formalism == "csplit")
    translator.reset(new CompoundSplit(conf));
  else if (formalism == "lextrans")
    translator.reset(new LexicalTrans(conf));
  else if (formalism == "lexalign")
    translator.reset(new LexicalAlign(conf));
  else if (formalism == "tagger")
    translator.reset(new Tagger(conf));
  else
    assert(!"error");

  // set up additional scoring features
  vector<shared_ptr<FeatureFunction> > pffs;

  vector<const FeatureFunction*> late_ffs,prelm_ffs;
  if (conf.count("feature_function") > 0) {
    const vector<string>& add_ffs = conf["feature_function"].as<vector<string> >();
    for (int i = 0; i < add_ffs.size(); ++i) {
      string ff, param;
      SplitCommandAndParam(add_ffs[i], &ff, &param);
      cerr << "Feature: " << ff;
      if (param.size() > 0) cerr << " (with config parameters '" << param << "')\n";
      else cerr << " (no config parameters)\n";
      shared_ptr<FeatureFunction> pff = global_ff_registry->Create(ff, param);
      FeatureFunction const* p=pff.get();
      if (!p) { exit(1); }
      // TODO check that multiple features aren't trying to set the same fid
      pffs.push_back(pff);
      late_ffs.push_back(p);
      int nbyte=p->NumBytesContext();
      if (verbose_feature_functions)
        cerr<<"State is "<<nbyte<<" bytes for feature "<<ff<<endl;
      if (has_prelm_models) {
        if (nbyte==0)
          prelm_ffs.push_back(p);
        else
          cerr << "Excluding stateful feature from prelm pruning: "<<ff<<" - state is "<<nbyte<<" bytes."<<endl;
}
    }
  }
  if (has_prelm_models)
        cerr << "prelm rescoring with "<<prelm_ffs.size()<<" 0-state feature functions.  +LM pass will use "<<late_ffs.size()<<" features (not counting rule features)."<<endl;

  ModelSet late_models(feature_weights, late_ffs);

  int palg = 1;
  if (LowercaseString(conf["intersection_strategy"].as<string>()) == "full") {
    palg = 0;
    cerr << "Using full intersection (no pruning).\n";
  }
  const IntersectionConfiguration inter_conf(palg, conf["cubepruning_pop_limit"].as<int>());

  const int sample_max_trans = conf.count("max_translation_sample") ?
    conf["max_translation_sample"].as<int>() : 0;
  if (sample_max_trans)
    rng.reset(new RandomNumberGenerator<boost::mt19937>);
  const bool aligner_mode = conf.count("aligner");
  const bool minimal_forests = conf.count("minimal_forests");
  const bool graphviz = conf.count("graphviz");
  const bool joshua_viz = conf.count("show_joshua_visualization");
  const bool encode_b64 = conf["vector_format"].as<string>() == "b64";
  const bool kbest = conf.count("k_best");
  const bool unique_kbest = conf.count("unique_k_best");
  const bool crf_uniform_empirical = conf.count("crf_uniform_empirical");
  shared_ptr<WriteFile> extract_file;
  if (conf.count("extract_rules"))
    extract_file.reset(new WriteFile(conf["extract_rules"].as<string>()));

  int combine_size = conf["combine_size"].as<int>();
  if (combine_size < 1) combine_size = 1;
  const string input = conf["input"].as<string>();
  cerr << "Reading input from " << ((input == "-") ? "STDIN" : input.c_str()) << endl;
  ReadFile in_read(input);
  istream *in = in_read.stream();
  assert(*in);

  SparseVector<prob_t> acc_vec;  // accumulate gradient
  double acc_obj = 0; // accumulate objective
  int g_count = 0;    // number of gradient pieces computed
  int sent_id = -1;         // line counter

  while(*in) {
    NgramCache::Clear();   // clear ngram cache for remote LM (if used)
    Timer::Summarize();
    ++sent_id;
    string buf;
    getline(*in, buf);
    if (buf.empty()) continue;
    map<string, string> sgml;
    ProcessAndStripSGML(&buf, &sgml);
    if (sgml.find("id") != sgml.end())
      sent_id = atoi(sgml["id"].c_str());

    cerr << "\nINPUT: ";
    if (buf.size() < 100)
      cerr << buf << endl;
    else {
     size_t x = buf.rfind(" ", 100);
     if (x == string::npos) x = 100;
     cerr << buf.substr(0, x) << " ..." << endl;
    }
    cerr << "  id = " << sent_id << endl;
    string to_translate;
    Lattice ref;
    ParseTranslatorInputLattice(buf, &to_translate, &ref);
    const unsigned srclen=NTokens(to_translate,' ');
//FIXME: should get the avg. or max source length of the input lattice (like Lattice::dist_(start,end)); but this is only used to scale beam parameters (optionally) anyway so fidelity isn't important.
    const bool has_ref = ref.size() > 0;
    SentenceMetadata smeta(sent_id, ref);
    const bool hadoop_counters = (write_gradient);
    Hypergraph forest;          // -LM forest
    translator->ProcessMarkupHints(sgml);
    Timer t("Translation");
    const bool translation_successful =
      translator->Translate(to_translate, &smeta, feature_weights, &forest);
    translator->SentenceComplete();
    if (!translation_successful) {
      cerr << "  NO PARSE FOUND.\n";
      if (hadoop_counters)
        cerr << "reporter:counter:UserCounters,FParseFailed,1" << endl;
      cout << endl << flush;
      continue;
    }
    const bool show_tree_structure=conf.count("show_tree_structure");
    const bool show_features=conf.count("show_features");
    forest_stats(forest,"  -LM forest",show_tree_structure,show_features);
    if (conf.count("show_expected_length")) {
      const PRPair<double, double> res =
        Inside<PRPair<double, double>,
               PRWeightFunction<double, EdgeProb, double, ELengthWeightFunction> >(forest);
      cerr << "  Expected length  (words): " << res.r / res.p << "\t" << res << endl;
    }
    if (conf.count("show_partition")) {
      const prob_t z = Inside<prob_t, EdgeProb>(forest);
      cerr << "  -LM partition     log(Z): " << log(z) << endl;
    }
    if (extract_file)
      ExtractRulesDedupe(forest, extract_file->stream());

    if (has_prelm_models) {
      ModelSet prelm_models(prelm_feature_weights, prelm_ffs);
      Timer t("prelm rescoring");
      forest.Reweight(prelm_feature_weights);
      forest.SortInEdgesByEdgeWeights();
      Hypergraph prelm_forest;
      ApplyModelSet(forest,
                    smeta,
                    prelm_models,
                    IntersectionConfiguration(exhaustive_t()),
// avoid overhead of best-first
                    &prelm_forest);
      forest.swap(prelm_forest);
      forest.Reweight(prelm_feature_weights);
      forest_stats(forest," prelm forest",show_tree_structure,show_features);
    }

    maybe_prune(forest,conf,"prelm_beam_prune","prelm_density_prune","-LM",srclen);

    bool has_late_models = !late_models.empty();
    if (has_late_models) {
      Timer t("Forest rescoring:");
      forest.Reweight(feature_weights);
      if (!has_prelm_models || conf.count("keep_prelm_cube_order"))
        forest.SortInEdgesByEdgeWeights();
      Hypergraph lm_forest;
      ApplyModelSet(forest,
                    smeta,
                    late_models,
                    inter_conf,
                    &lm_forest);
      forest.swap(lm_forest);
      forest.Reweight(feature_weights);
      forest_stats(forest,"  +LM forest",show_tree_structure,show_features);
    }

    maybe_prune(forest,conf,"beam_prune","density_prune","+LM",srclen);

    if (conf.count("forest_output") && !has_ref) {
      ForestWriter writer(conf["forest_output"].as<string>(), sent_id);
      if (FileExists(writer.fname_)) {
        cerr << "  Unioning...\n";
        Hypergraph new_hg;
        {
          ReadFile rf(writer.fname_);
          bool succeeded = HypergraphIO::ReadFromJSON(rf.stream(), &new_hg);
          assert(succeeded);
        }
        new_hg.Union(forest);
        bool succeeded = writer.Write(new_hg, minimal_forests);
        assert(succeeded);
      } else {
        bool succeeded = writer.Write(forest, minimal_forests);
        assert(succeeded);
      }
    }

    if (sample_max_trans) {
      MaxTranslationSample(&forest, sample_max_trans, conf.count("k_best") ? conf["k_best"].as<int>() : 0);
    } else {
      vector<WordID> trans;
      ViterbiESentence(forest, &trans);

      if (kbest) {
        DumpKBest(sent_id, forest, conf["k_best"].as<int>(), unique_kbest);
      } else if (csplit_output_plf) {
        cout << HypergraphIO::AsPLF(forest, false) << endl;
      } else {
        if (!graphviz && !has_ref && !joshua_viz) {
          cout << TD::GetString(trans) << endl << flush;
        }
        if (joshua_viz) {
          cout << sent_id << " ||| " << JoshuaVisualizationString(forest) << " ||| 1.0 ||| " << -1.0 << endl << flush;
        }
      }
    }

    const int max_trans_beam_size = conf.count("max_translation_beam") ?
      conf["max_translation_beam"].as<int>() : 0;
    if (max_trans_beam_size) {
      Hack::MaxTrans(forest, max_trans_beam_size);
      continue;
    }

    if (graphviz && !has_ref) forest.PrintGraphviz();

    // the following are only used if write_gradient is true!
    SparseVector<prob_t> full_exp, ref_exp, gradient;
    double log_z = 0, log_ref_z = 0;
    if (write_gradient) {
      const prob_t z = InsideOutside<prob_t, EdgeProb, SparseVector<prob_t>, EdgeFeaturesAndProbWeightFunction>(forest, &full_exp);
      log_z = log(z);
      full_exp /= z;
    }
    if (conf.count("show_cfg_search_space"))
      HypergraphIO::WriteAsCFG(forest);
    if (has_ref) {
      if (HG::Intersect(ref, &forest)) {
        cerr << "  Constr. forest (nodes/edges): " << forest.nodes_.size() << '/' << forest.edges_.size() << endl;
        cerr << "  Constr. forest       (paths): " << forest.NumberOfPaths() << endl;
        if (crf_uniform_empirical) {
          cerr << "  USING UNIFORM WEIGHTS\n";
          for (int i = 0; i < forest.edges_.size(); ++i)
            forest.edges_[i].edge_prob_=prob_t::One();
        } else {
          forest.Reweight(feature_weights);
          cerr << "  Constr. VitTree: " << ViterbiFTree(forest) << endl;
        }
	if (hadoop_counters)
          cerr << "reporter:counter:UserCounters,SentencePairsParsed,1" << endl;
        if (conf.count("show_partition")) {
           const prob_t z = Inside<prob_t, EdgeProb>(forest);
           cerr << "  Contst. partition  log(Z): " << log(z) << endl;
        }
        //DumpKBest(sent_id, forest, 1000);
        if (conf.count("forest_output")) {
          ForestWriter writer(conf["forest_output"].as<string>(), sent_id);
          if (FileExists(writer.fname_)) {
            cerr << "  Unioning...\n";
            Hypergraph new_hg;
            {
              ReadFile rf(writer.fname_);
              bool succeeded = HypergraphIO::ReadFromJSON(rf.stream(), &new_hg);
              assert(succeeded);
            }
            new_hg.Union(forest);
            bool succeeded = writer.Write(new_hg, minimal_forests);
            assert(succeeded);
          } else {
            bool succeeded = writer.Write(forest, minimal_forests);
            assert(succeeded);
          }
        }
        if (aligner_mode && !output_training_vector)
          AlignerTools::WriteAlignment(smeta.GetSourceLattice(), smeta.GetReference(), forest, &cout);
        if (write_gradient) {
          const prob_t ref_z = InsideOutside<prob_t, EdgeProb, SparseVector<prob_t>, EdgeFeaturesAndProbWeightFunction>(forest, &ref_exp);
          ref_exp /= ref_z;
          if (crf_uniform_empirical) {
            log_ref_z = ref_exp.dot(feature_weights);
          } else {
            log_ref_z = log(ref_z);
          }
          //cerr << "      MODEL LOG Z: " << log_z << endl;
          //cerr << "  EMPIRICAL LOG Z: " << log_ref_z << endl;
          if ((log_z - log_ref_z) < kMINUS_EPSILON) {
            cerr << "DIFF. ERR! log_z < log_ref_z: " << log_z << " " << log_ref_z << endl;
            exit(1);
          }
          assert(!isnan(log_ref_z));
          ref_exp -= full_exp;
          acc_vec += ref_exp;
          acc_obj += (log_z - log_ref_z);
        }
        if (feature_expectations) {
          const prob_t z =
            InsideOutside<prob_t, EdgeProb, SparseVector<prob_t>, EdgeFeaturesAndProbWeightFunction>(forest, &ref_exp);
          ref_exp /= z;
          acc_obj += log(z);
          acc_vec += ref_exp;
        }

        if (output_training_vector) {
          acc_vec.clear_value(0);
          ++g_count;
          if (g_count % combine_size == 0) {
            if (encode_b64) {
              cout << "0\t";
              SparseVector<double> dav; ConvertSV(acc_vec, &dav);
              B64::Encode(acc_obj, dav, &cout);
              cout << endl << flush;
            } else {
              cout << "0\t**OBJ**=" << acc_obj << ';' <<  acc_vec << endl << flush;
            }
            acc_vec.clear();
            acc_obj = 0;
          }
        }
        if (conf.count("graphviz")) forest.PrintGraphviz();
      } else {
        cerr << "  REFERENCE UNREACHABLE.\n";
        if (write_gradient) {
	  if (hadoop_counters)
            cerr << "reporter:counter:UserCounters,EFParseFailed,1" << endl;
          cout << endl << flush;
	}
      }
    }
  }
  if (output_training_vector && !acc_vec.empty()) {
    if (encode_b64) {
      cout << "0\t";
      SparseVector<double> dav; ConvertSV(acc_vec, &dav);
      B64::Encode(acc_obj, dav, &cout);
      cout << endl << flush;
    } else {
      cout << "0\t**OBJ**=" << acc_obj << ';' << acc_vec << endl << flush;
    }
  }
}