summaryrefslogtreecommitdiff
path: root/decoder/apply_fsa_models.cc
blob: b43c02a4673121444fafcfb92547716e769bb12f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#include "apply_fsa_models.h"
#include "hg.h"
#include "ff_fsa_dynamic.h"
#include "ff_from_fsa.h"
#include "feature_vector.h"
#include "stringlib.h"
#include "apply_models.h"
#include <stdexcept>
#include <cassert>
#include "cfg.h"
#include "hg_cfg.h"
#include "utoa.h"
#include "hash.h"
#include "value_array.h"

#define DFSA(x) x
#define DPFSA(x) x

using namespace std;

//impl details (not exported).  flat namespace for my ease.

typedef CFG::BinRhs BinRhs;
typedef CFG::NTs NTs;
typedef CFG::NT NT;
typedef CFG::NTHandle NTHandle;
typedef CFG::Rules Rules;
typedef CFG::Rule Rule;
typedef CFG::RuleHandle RuleHandle;

namespace {

/*

1) A -> x . * (trie)

this is somewhat nice.  cost pushed for best first, of course.  similar benefit as left-branching binarization without the explicit predict/complete steps?

vs. just

2) * -> x . y

here you have to potentially list out all A -> . x y as items * -> . x y immediately, and shared rhs seqs won't be shared except at the usual single-NT predict/complete.  of course, the prediction of items -> . x y can occur lazy best-first.

vs.

3) * -> x . *

with 3, we predict all sorts of useless items - that won't give us our goal A and may not partcipate in any parse.  this is not a good option at all.
*/

#define TRIE_START_LHS 1
// option 1) above.  0 would be option 3), which is dumb

// if we don't greedy-binarize, we want to encode recognized prefixes p (X -> p . rest) efficiently.  if we're doing this, we may as well also push costs so we can best-first select rules in a lazy fashion.  this is effectively left-branching binarization, of course.
template <class K,class V,class Hash>
struct fsa_map_type {
  typedef std::map<K,V> type;
};
//template typedef
#define FSA_MAP(k,v) fsa_map_type<k,v,boost::hash<k> >::type
typedef WordID LHS; // so this will be -NTHandle.


struct PrefixTrieNode {
  prob_t backward; // (viterbi) backward prob (for cost pushing)
#
#if TRIE_START_LHS
  typedef FSA_MAP(LHS,RuleHandle) Completed; // can only have one rule w/ a given signature (duplicates should be collapsed when making CFG).  but there may be multiple rules, with different LHS
  Completed completed;
#else
  bool complete; // may also have successors, of course
#endif
  // instead of completed map, we have trie start w/ lhs.?

  // outgoing edges will be ordered highest p to worst p
  struct Edge {
    DPFSA(prob_t p;) // we can probably just store deltas, but for debugging remember the full p
    prob_t delta; // p[i]=delta*p[i-1], with p(-1)=1
    PrefixTrieNode *dest;
    WordID w;
  };
  typedef FSA_MAP(WordID,Edge) BuildAdj;
  BuildAdj build_adj; //TODO: move builder elsewhere?
  typedef ValueArray<Edge>  Adj;
//  typedef vector<Edge> Adj;
  Adj adj;
  //TODO:
};

#if TRIE_START_LHS
//Trie starts with lhs, then continues w/ rhs
#else
// just rhs.  i think item names should exclude lhs if possible (most sharing).  get prefix cost w/ forward = viterbi (global best-first admissable h only) and it should be ok?
#endif

// costs are pushed.
struct PrefixTrie {
  CFG const* cfgp;
  CFG const& cfg() const { return *cfgp; }
  PrefixTrie(CFG const& cfg) : cfgp(&cfg) {

//TODO:
  }
};

// these should go in a global best-first queue
struct Item {
  prob_t forward;
  /* The forward probability alpha_i(X[k]->x.y) is the sum of the probabilities of all
     constrained paths of length that end in state X[k]->x.y*/
  prob_t inner;
  /* The inner probability beta_i(X[k]->x.y) is the sum of the probabilities of all
     paths of length i-k that start in state X[k,k]->.xy and end in X[k,i]->x.y, and generate the input symbols x[k,...,i-1] */

};

}//anon ns


DEFINE_NAMED_ENUM(FSA_BY)

struct ApplyFsa {
  ApplyFsa(HgCFG &i,
           const SentenceMetadata& smeta,
           const FsaFeatureFunction& fsa,
           DenseWeightVector const& weights,
           ApplyFsaBy const& by,
           Hypergraph* oh
    )
    :hgcfg(i),smeta(smeta),fsa(fsa),weights(weights),by(by),oh(oh)
  {
  }
  void Compute() {
    if (by.IsBottomUp())
      ApplyBottomUp();
    else
      ApplyEarley();
  }
  void ApplyBottomUp();
  void ApplyEarley();
  CFG const& GetCFG();
private:
  CFG cfg;
  HgCFG &hgcfg;
  const SentenceMetadata& smeta;
  const FsaFeatureFunction& fsa;
//  WeightVector weight_vector;
  DenseWeightVector weights;
  ApplyFsaBy by;
  Hypergraph* oh;
  std::string cfg_out;
};

void ApplyFsa::ApplyBottomUp()
{
  assert(by.IsBottomUp());
  FeatureFunctionFromFsa<FsaFeatureFunctionFwd> buff(&fsa);
  buff.Init(); // mandatory to call this (normally factory would do it)
  vector<const FeatureFunction*> ffs(1,&buff);
  ModelSet models(weights, ffs);
  IntersectionConfiguration i(by.BottomUpAlgorithm(),by.pop_limit);
  ApplyModelSet(hgcfg.ih,smeta,models,i,oh);
}

void ApplyFsa::ApplyEarley()
{
  hgcfg.GiveCFG(cfg);
  cfg.SortLocalBestFirst();
  // don't need to uniq - option to do that already exists in cfg_options
  //TODO:
}


void ApplyFsaModels(HgCFG &i,
                    const SentenceMetadata& smeta,
                    const FsaFeatureFunction& fsa,
                    DenseWeightVector const& weight_vector,
                    ApplyFsaBy const& by,
                    Hypergraph* oh)
{
  ApplyFsa a(i,smeta,fsa,weight_vector,by,oh);
  a.Compute();
}

/*
namespace {
char const* anames[]={
  "BU_CUBE",
  "BU_FULL",
  "EARLEY",
  0
};
}
*/

//TODO: named enum type in boost?

std::string ApplyFsaBy::name() const {
//  return anames[algorithm];
  return GetName(algorithm);
}

std::string ApplyFsaBy::all_names() {
  return FsaByNames(" ");
  /*
  std::ostringstream o;
  for (int i=0;i<N_ALGORITHMS;++i) {
    assert(anames[i]);
    if (i) o<<' ';
    o<<anames[i];
  }
  return o.str();
  */
}

ApplyFsaBy::ApplyFsaBy(std::string const& n, int pop_limit) : pop_limit(pop_limit) {
  std::string uname=toupper(n);
  algorithm=GetFsaBy(uname);
/*anames=0;
  while(anames[algorithm] && anames[algorithm] != uname) ++algorithm;
  if (!anames[algorithm])
    throw std::runtime_error("Unknown ApplyFsaBy type: "+n+" - legal types: "+all_names());
*/
}

ApplyFsaBy::ApplyFsaBy(FsaBy i, int pop_limit) : pop_limit(pop_limit) {
/*  if (i<0 || i>=N_ALGORITHMS)
    throw std::runtime_error("Unknown ApplyFsaBy type id: "+itos(i)+" - legal types: "+all_names());
*/
  GetName(i); // checks validity
  algorithm=i;
}

int ApplyFsaBy::BottomUpAlgorithm() const {
  assert(IsBottomUp());
  return algorithm==BU_CUBE ?
    IntersectionConfiguration::CUBE
    :IntersectionConfiguration::FULL;
}

void ApplyFsaModels(Hypergraph const& ih,
                    const SentenceMetadata& smeta,
                    const FsaFeatureFunction& fsa,
                    DenseWeightVector const& weights, // pre: in is weighted by these (except with fsa featval=0 before this)
                    ApplyFsaBy const& cfg,
                    Hypergraph* out)
{
  HgCFG i(ih);
  ApplyFsaModels(i,smeta,fsa,weights,cfg,out);
}