summaryrefslogtreecommitdiff
path: root/decoder/aligner.cc
blob: 292ee12314451b917933a44375992139f8b6b9e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
#include "aligner.h"

#include <cstdio>
#include <set>

#include <boost/scoped_ptr.hpp>

#include "array2d.h"
#include "hg.h"
#include "kbest.h"
#include "sentence_metadata.h"
#include "inside_outside.h"
#include "viterbi.h"
#include "alignment_pharaoh.h"

using namespace std;

// used with lexical models since they may not fully generate the
// source string
void SourceEdgeCoveragesUsingParseIndices(const Hypergraph& g,
                                          vector<set<int> >* src_cov) {
  src_cov->clear();
  src_cov->resize(g.edges_.size());

  for (int i = 0; i < g.edges_.size(); ++i) {
    const Hypergraph::Edge& edge = g.edges_[i];
    set<int>& cov = (*src_cov)[i];
    // no words
    if (edge.rule_->EWords() == 0 || edge.rule_->FWords() == 0)
      continue;
    // aligned to NULL (crf ibm variant only)
    if (edge.prev_i_ == -1 || edge.i_ == -1) {
      cov.insert(-1);
      continue;
    }
    assert(edge.j_ >= 0);
    assert(edge.prev_j_ >= 0);
    if (edge.Arity() == 0) {
      for (int k = edge.prev_i_; k < edge.prev_j_; ++k)
        cov.insert(k);
    } else {
      // note: this code, which handles mixed NT and terminal
      // rules assumes that nodes uniquely define a src and trg
      // span.
      int k = edge.prev_i_;
      int j = 0;
      const vector<WordID>& f = edge.rule_->e();  // rules are inverted
      while (k < edge.prev_j_) {
        if (f[j] > 0) {
          cov.insert(k);
          // cerr << "src: " << k << endl;
          ++k;
          ++j;
        } else {
          const Hypergraph::Node& tailnode = g.nodes_[edge.tail_nodes_[-f[j]]];
          assert(tailnode.in_edges_.size() > 0);
          // any edge will do:
          const Hypergraph::Edge& rep_edge = g.edges_[tailnode.in_edges_.front()];
          //cerr << "skip " << (rep_edge.prev_j_ - rep_edge.prev_i_) << endl;  // src span
          k += (rep_edge.prev_j_ - rep_edge.prev_i_);  // src span
          ++j;
        }
      }
    }
  }
}

int SourceEdgeCoveragesUsingTree(const Hypergraph& g,
                                 int node_id,
                                 int span_start,
                                 vector<int>* spans,
                                 vector<set<int> >* src_cov) {
  const Hypergraph::Node& node = g.nodes_[node_id];
  int k = -1;
  for (int i = 0; i < node.in_edges_.size(); ++i) {
    const int edge_id = node.in_edges_[i];
    const Hypergraph::Edge& edge = g.edges_[edge_id];
    set<int>& cov = (*src_cov)[edge_id];
    const vector<WordID>& f = edge.rule_->e();  // rules are inverted
    int j = 0;
    k = span_start;
    while (j < f.size()) {
      if (f[j] > 0) {
        cov.insert(k);
        ++k;
        ++j;
      } else {
        const int tail_node_id = edge.tail_nodes_[-f[j]];
        int &right_edge = (*spans)[tail_node_id];
        if (right_edge < 0)
          right_edge = SourceEdgeCoveragesUsingTree(g, tail_node_id, k, spans, src_cov);
        k = right_edge;
        ++j;
      }
    }
  }
  return k;
}

void SourceEdgeCoveragesUsingTree(const Hypergraph& g,
                                  vector<set<int> >* src_cov) {
  src_cov->clear();
  src_cov->resize(g.edges_.size());
  vector<int> span_sizes(g.nodes_.size(), -1);
  SourceEdgeCoveragesUsingTree(g, g.nodes_.size() - 1, 0, &span_sizes, src_cov);
}

int TargetEdgeCoveragesUsingTree(const Hypergraph& g,
                                 int node_id,
                                 int span_start,
                                 vector<int>* spans,
                                 vector<set<int> >* trg_cov) {
  const Hypergraph::Node& node = g.nodes_[node_id];
  int k = -1;
  for (int i = 0; i < node.in_edges_.size(); ++i) {
    const int edge_id = node.in_edges_[i];
    const Hypergraph::Edge& edge = g.edges_[edge_id];
    set<int>& cov = (*trg_cov)[edge_id];
    int ntc = 0;
    const vector<WordID>& e = edge.rule_->f();  // rules are inverted
    int j = 0;
    k = span_start;
    while (j < e.size()) {
      if (e[j] > 0) {
        cov.insert(k);
        ++k;
        ++j;
      } else {
        const int tail_node_id = edge.tail_nodes_[ntc];
        ++ntc;
        int &right_edge = (*spans)[tail_node_id];
        if (right_edge < 0)
          right_edge = TargetEdgeCoveragesUsingTree(g, tail_node_id, k, spans, trg_cov);
        k = right_edge;
        ++j;
      }
    }
    // cerr << "node=" << node_id << ": k=" << k << endl;
  }
  return k;
}

void TargetEdgeCoveragesUsingTree(const Hypergraph& g,
                                  vector<set<int> >* trg_cov) {
  trg_cov->clear();
  trg_cov->resize(g.edges_.size());
  vector<int> span_sizes(g.nodes_.size(), -1);
  TargetEdgeCoveragesUsingTree(g, g.nodes_.size() - 1, 0, &span_sizes, trg_cov);
}

struct TransitionEventWeightFunction {
  typedef SparseVector<prob_t> Result;
  inline SparseVector<prob_t> operator()(const Hypergraph::Edge& e) const {
    SparseVector<prob_t> result;
    result.set_value(e.id_, e.edge_prob_);
    return result;
  }
};

inline void WriteProbGrid(const Array2D<prob_t>& m, ostream* pos) {
  ostream& os = *pos;
  char b[1024];
  for (int i=0; i<m.width(); ++i) {
    for (int j=0; j<m.height(); ++j) {
      if (m(i,j) == prob_t::Zero()) {
        os << "\t---X---";
      } else {
        snprintf(b, 1024, "%0.5f", static_cast<double>(m(i,j)));
        os << '\t' << b;
      }
    }
    os << '\n';
  }
}

// this code is rather complicated since it must deal with generating alignments
// when lattices are specified as input as well as with models that do not generate
// full sentence pairs (like lexical alignment models)
void AlignerTools::WriteAlignment(const Lattice& src_lattice,
                                  const Lattice& trg_lattice,
                                  const Hypergraph& in_g,
                                  ostream* out,
                                  bool map_instead_of_viterbi,
                                  int k_best, // must = 0 if MAP
                                  const vector<bool>* edges) {
  bool fix_up_src_spans = false;
  if (k_best > 1 && edges) {
    cerr << "ERROR: cannot request multiple best alignments and provide an edge set!\n";
    abort();
  }
  if (map_instead_of_viterbi) {
    if (k_best != 0) {
      cerr << "WARNING: K-best alignment extraction not available for MAP, use --aligner_use_viterbi\n";
    }
    k_best = 1;
  } else {
    if (k_best == 0) k_best = 1;
  }
  const Hypergraph* g = &in_g;
  HypergraphP new_hg;
  if (!src_lattice.IsSentence() ||
      !trg_lattice.IsSentence()) {
    if (map_instead_of_viterbi) {
      cerr << "  Lattice alignment: using Viterbi instead of MAP alignment\n";
    }
    map_instead_of_viterbi = false;
    fix_up_src_spans = !src_lattice.IsSentence();
  }

  KBest::KBestDerivations<vector<Hypergraph::Edge const*>, ViterbiPathTraversal> kbest(in_g, k_best);
  boost::scoped_ptr<vector<bool> > kbest_edges;

  for (int best = 0; best < k_best; ++best) {
    const KBest::KBestDerivations<vector<Hypergraph::Edge const*>, ViterbiPathTraversal>::Derivation* d = NULL;
    if (!map_instead_of_viterbi) {
      d = kbest.LazyKthBest(in_g.nodes_.size() - 1, best);
      if (!d) break;  // there are fewer than k_best derivations!
      const vector<Hypergraph::Edge const*>& yield = d->yield;
      kbest_edges.reset(new vector<bool>(in_g.edges_.size(), false));
      for (int i = 0; i < yield.size(); ++i) {
        assert(yield[i]->id_ < kbest_edges->size());
        (*kbest_edges)[yield[i]->id_] = true;
      }
    }
    if (!map_instead_of_viterbi || edges) {
      if (kbest_edges) edges = kbest_edges.get();
      new_hg = in_g.CreateViterbiHypergraph(edges);
      for (int i = 0; i < new_hg->edges_.size(); ++i)
        new_hg->edges_[i].edge_prob_ = prob_t::One();
      g = new_hg.get();
    }

    vector<prob_t> edge_posteriors(g->edges_.size(), prob_t::Zero());
    vector<WordID> trg_sent;
    vector<WordID> src_sent;
    if (fix_up_src_spans) {
      ViterbiESentence(*g, &src_sent);
    } else {
      src_sent.resize(src_lattice.size());
      for (int i = 0; i < src_sent.size(); ++i)
        src_sent[i] = src_lattice[i][0].label;
    }

    ViterbiFSentence(*g, &trg_sent);

    if (edges || !map_instead_of_viterbi) {
      for (int i = 0; i < edge_posteriors.size(); ++i)
        edge_posteriors[i] = prob_t::One();
    } else {
      SparseVector<prob_t> posts;
      const prob_t z = InsideOutside<prob_t, EdgeProb, SparseVector<prob_t>, TransitionEventWeightFunction>(*g, &posts);
      for (int i = 0; i < edge_posteriors.size(); ++i)
        edge_posteriors[i] = posts.value(i) / z;
    }
    vector<set<int> > src_cov(g->edges_.size());
    vector<set<int> > trg_cov(g->edges_.size());
    TargetEdgeCoveragesUsingTree(*g, &trg_cov);

    if (fix_up_src_spans)
      SourceEdgeCoveragesUsingTree(*g, &src_cov);
    else
      SourceEdgeCoveragesUsingParseIndices(*g, &src_cov);

    // figure out the src and reference size;
    int src_size = src_sent.size();
    int ref_size = trg_sent.size();
    Array2D<prob_t> align(src_size + 1, ref_size, prob_t::Zero());
    for (int c = 0; c < g->edges_.size(); ++c) {
      const prob_t& p = edge_posteriors[c];
      const set<int>& srcs = src_cov[c];
      const set<int>& trgs = trg_cov[c];
      for (set<int>::const_iterator si = srcs.begin();
           si != srcs.end(); ++si) {
        for (set<int>::const_iterator ti = trgs.begin();
             ti != trgs.end(); ++ti) {
          align(*si + 1, *ti) += p;
        }
      }
    }
    new_hg.reset();
    //if (g != &in_g) { g.reset(); }

    prob_t threshold(0.9);
    const bool use_soft_threshold = true; // TODO configure

    Array2D<bool> grid(src_size, ref_size, false);
    for (int j = 0; j < ref_size; ++j) {
      if (use_soft_threshold) {
        threshold = prob_t::Zero();
        for (int i = 0; i <= src_size; ++i)
          if (align(i, j) > threshold) threshold = align(i, j);
        //threshold *= prob_t(0.99);
      }
      for (int i = 0; i < src_size; ++i)
        grid(i, j) = align(i+1, j) >= threshold;
    }
    if (out == &cout && k_best < 2) {
      // TODO need to do some sort of verbose flag
      WriteProbGrid(align, &cerr);
      cerr << grid << endl;
    }
    (*out) << TD::GetString(src_sent) << " ||| " << TD::GetString(trg_sent) << " ||| ";
    AlignmentPharaoh::SerializePharaohFormat(grid, out);
  }
};