1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
|
#include <cstdlib>
#include <iostream>
#include <vector>
#include <tr1/unordered_map>
#include <limits>
#include <cmath>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
#include "json_feature_map_lexer.h"
#include "prob.h"
#include "filelib.h"
#include "weights.h"
#include "sparse_vector.h"
#include "liblbfgs/lbfgs++.h"
using namespace std;
using namespace std::tr1;
namespace po = boost::program_options;
void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
po::options_description opts("Configuration options");
opts.add_options()
("training_features,x", po::value<string>(), "File containing training instance features (ARKRegression format)")
("training_responses,y", po::value<string>(), "File containing training response features (ARKRegression format)")
("linear,n", "Linear (rather than logistic) regression")
("l1",po::value<double>()->default_value(0.0), "l_1 regularization strength")
("l2",po::value<double>()->default_value(0.0), "l_2 regularization strength")
("test_features,t", po::value<string>(), "File containing training instance features (ARKRegression format)")
("test_responses,s", po::value<string>(), "File containing training response features (ARKRegression format)")
("weights,w", po::value<string>(), "Initial weights")
("epsilon,e", po::value<double>()->default_value(1e-4), "Epsilon for convergence test. Terminates when ||g|| < epsilon * max(1, ||w||)")
("memory_buffers,m",po::value<unsigned>()->default_value(40), "Number of memory buffers for LBFGS")
("help,h", "Help");
po::options_description dcmdline_options;
dcmdline_options.add(opts);
po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
if (conf->count("help") || !conf->count("training_features") || !conf->count("training_responses")) {
cerr << dcmdline_options << endl;
exit(1);
}
}
struct TrainingInstance {
SparseVector<float> x;
union {
unsigned label; // for categorical predictions
float value; // for continuous predictions
} y;
};
struct ReaderHelper {
explicit ReaderHelper(vector<TrainingInstance>* xyp) : xy_pairs(xyp), lc(), flag() {}
unordered_map<string, unsigned> id2ind;
vector<TrainingInstance>* xy_pairs;
int lc;
bool flag;
};
void ReaderCB(const string& id, const SparseVector<float>& fmap, void* extra) {
ReaderHelper& rh = *reinterpret_cast<ReaderHelper*>(extra);
++rh.lc;
if (rh.lc % 1000 == 0) { cerr << '.'; rh.flag = true; }
if (rh.lc % 40000 == 0) { cerr << " [" << rh.lc << "]\n"; rh.flag = false; }
const unordered_map<string, unsigned>::iterator it = rh.id2ind.find(id);
if (it == rh.id2ind.end()) {
cerr << "Unlabeled example in line " << rh.lc << " (key=" << id << ')' << endl;
abort();
}
(*rh.xy_pairs)[it->second - 1].x = fmap;
}
void ReadLabeledInstances(const string& ffeats,
const string& fresp,
const bool is_continuous,
vector<TrainingInstance>* xy_pairs,
vector<string>* labels) {
bool flag = false;
xy_pairs->clear();
int lc = 0;
ReaderHelper rh(xy_pairs);
unordered_map<string, unsigned> label2id;
cerr << "Reading responses from " << fresp << " ..." << endl;
ReadFile fr(fresp);
for (unsigned i = 0; i < labels->size(); ++i)
label2id[(*labels)[i]] = i;
istream& in = *fr.stream();
string line;
while(getline(in, line)) {
++lc;
if (lc % 1000 == 0) { cerr << '.'; flag = true; }
if (lc % 40000 == 0) { cerr << " [" << lc << "]\n"; flag = false; }
if (line.size() == 0) continue;
if (line[0] == '#') continue;
unsigned p = 0;
while (p < line.size() && line[p] != ' ' && line[p] != '\t') { ++p; }
unsigned& ind = rh.id2ind[line.substr(0, p)];
if (ind != 0) { cerr << "ID " << line.substr(0, p) << " duplicated in line " << lc << endl; abort(); }
while (p < line.size() && (line[p] == ' ' || line[p] == '\t')) { ++p; }
assert(p < line.size());
xy_pairs->push_back(TrainingInstance());
ind = xy_pairs->size();
if (is_continuous) {
xy_pairs->back().y.value = strtof(&line[p], 0);
} else { // categorical predictions
unordered_map<string, unsigned>::iterator it = label2id.find(line.substr(p));
if (it == label2id.end()) {
const string label = line.substr(p);
it = label2id.insert(make_pair(label, labels->size())).first;
labels->push_back(label);
}
xy_pairs->back().y.label = it->second; // label id
}
}
if (flag) cerr << endl;
if (!is_continuous) {
cerr << "LABELS:";
for (unsigned j = 0; j < labels->size(); ++j)
cerr << " " << (*labels)[j];
cerr << endl;
}
cerr << "Reading features from " << ffeats << " ..." << endl;
ReadFile ff(ffeats);
JSONFeatureMapLexer::ReadRules(ff.stream(), ReaderCB, &rh);
if (rh.flag) cerr << endl;
}
// helper base class (not polymorphic- just a container and some helper functions) for loss functions
// real loss functions should implement double operator()(const vector<double>& x, double* g),
// which should evaluate f(x) and g = f'(x)
struct BaseLoss {
// dimp1 = number of categorial outputs possible for logistic regression
// for linear regression, it should be 1 more than the dimension of the response variable
BaseLoss(
const vector<TrainingInstance>& tr,
unsigned dimp1,
unsigned numfeats,
unsigned ll2) : training(tr), K(dimp1), p(numfeats), l2(ll2) {}
// weight vector layout for K classes, with p features
// w[0 : K-1] = bias weights
// w[y*p + K : y*p + K + p - 1] = feature weights for y^th class
// this representation is used in ComputeDotProducts and GradAdd
void ComputeDotProducts(const SparseVector<float>& fx, // feature vector of x
const vector<double>& w, // full weight vector
vector<double>* pdotprods) const {
vector<double>& dotprods = *pdotprods;
const unsigned km1 = K - 1;
dotprods.resize(km1);
for (unsigned y = 0; y < km1; ++y)
dotprods[y] = w[y]; // bias terms
for (SparseVector<float>::const_iterator it = fx.begin(); it != fx.end(); ++it) {
const float fval = it->second;
const unsigned fid = it->first;
for (unsigned y = 0; y < km1; ++y)
dotprods[y] += w[fid + y * p + km1] * fval;
}
}
double ApplyRegularizationTerms(const vector<double>& weights,
double* g) const {
double reg = 0;
for (size_t i = K - 1; i < weights.size(); ++i) {
const double& w_i = weights[i];
reg += l2 * w_i * w_i;
g[i] += 2 * l2 * w_i;
}
return reg;
}
void GradAdd(const SparseVector<float>& fx,
const unsigned y,
const double scale,
double* acc) const {
acc[y] += scale; // class bias
for (SparseVector<float>::const_iterator it = fx.begin();
it != fx.end(); ++it)
acc[it->first + y * p + K - 1] += it->second * scale;
}
const vector<TrainingInstance>& training;
const unsigned K, p;
const double l2;
};
struct UnivariateSquaredLoss : public BaseLoss {
UnivariateSquaredLoss(
const vector<TrainingInstance>& tr,
unsigned numfeats,
const double l2) : BaseLoss(tr, 2, numfeats, l2) {}
// evaluate squared loss and gradient
double operator()(const vector<double>& x, double* g) const {
fill(g, g + x.size(), 0.0);
double cll = 0;
vector<double> dotprods(1); // univariate prediction
for (unsigned i = 0; i < training.size(); ++i) {
const SparseVector<float>& fmapx = training[i].x;
const double refy = training[i].y.value;
ComputeDotProducts(fmapx, x, &dotprods);
double diff = dotprods[0] - refy;
cll += diff * diff;
double scale = 2 * diff;
GradAdd(fmapx, 0, scale, g);
}
double reg = ApplyRegularizationTerms(x, g);
return cll + reg;
}
// return root mse
double Evaluate(const vector<TrainingInstance>& test,
const vector<double>& w) const {
vector<double> dotprods(1); // K-1 degrees of freedom
double mse = 0;
for (unsigned i = 0; i < test.size(); ++i) {
const SparseVector<float>& fmapx = test[i].x;
const float refy = test[i].y.value;
ComputeDotProducts(fmapx, w, &dotprods);
double diff = dotprods[0] - refy;
cerr << "line=" << (i+1) << " true=" << refy << " pred=" << dotprods[0] << endl;
mse += diff * diff;
}
mse /= test.size();
return sqrt(mse);
}
};
struct MulticlassLogLoss : public BaseLoss {
MulticlassLogLoss(
const vector<TrainingInstance>& tr,
unsigned k,
unsigned numfeats,
const double l2) : BaseLoss(tr, k, numfeats, l2) {}
// evaluate log loss and gradient
double operator()(const vector<double>& x, double* g) const {
fill(g, g + x.size(), 0.0);
vector<double> dotprods(K - 1); // K-1 degrees of freedom
vector<prob_t> probs(K);
double cll = 0;
for (unsigned i = 0; i < training.size(); ++i) {
const SparseVector<float>& fmapx = training[i].x;
const unsigned refy = training[i].y.label;
//cerr << "FMAP: " << fmapx << endl;
ComputeDotProducts(fmapx, x, &dotprods);
prob_t z;
for (unsigned j = 0; j < dotprods.size(); ++j)
z += (probs[j] = prob_t(dotprods[j], init_lnx()));
z += (probs.back() = prob_t::One());
for (unsigned y = 0; y < probs.size(); ++y) {
probs[y] /= z;
//cerr << " p(y=" << y << ")=" << probs[y].as_float() << "\tz=" << z << endl;
}
cll -= log(probs[refy]); // log p(y | x)
for (unsigned y = 0; y < dotprods.size(); ++y) {
double scale = probs[y].as_float();
if (y == refy) { scale -= 1.0; }
GradAdd(fmapx, y, scale, g);
}
}
double reg = ApplyRegularizationTerms(x, g);
return cll + reg;
}
double Evaluate(const vector<TrainingInstance>& test,
const vector<double>& w) const {
vector<double> dotprods(K - 1); // K-1 degrees of freedom
double correct = 0;
for (unsigned i = 0; i < test.size(); ++i) {
const SparseVector<float>& fmapx = test[i].x;
const unsigned refy = test[i].y.label;
ComputeDotProducts(fmapx, w, &dotprods);
double best = 0;
unsigned besty = dotprods.size();
for (unsigned y = 0; y < dotprods.size(); ++y)
if (dotprods[y] > best) { best = dotprods[y]; besty = y; }
if (refy == besty) { ++correct; }
}
return correct / test.size();
}
};
template <class LossFunction>
double LearnParameters(LossFunction& loss,
const double l1,
const unsigned l1_start,
const unsigned memory_buffers,
const double eps,
vector<double>* px) {
LBFGS<LossFunction> lbfgs(px, loss, memory_buffers, l1, l1_start, eps);
lbfgs.MinimizeFunction();
return 0;
}
int main(int argc, char** argv) {
po::variables_map conf;
InitCommandLine(argc, argv, &conf);
string line;
double l1 = conf["l1"].as<double>();
double l2 = conf["l2"].as<double>();
const unsigned memory_buffers = conf["memory_buffers"].as<unsigned>();
const double epsilon = conf["epsilon"].as<double>();
if (l1 < 0.0) {
cerr << "L1 strength must be >= 0\n";
return 1;
}
if (l2 < 0.0) {
cerr << "L2 strength must be >= 0\n";
return 2;
}
const bool is_continuous = conf.count("linear");
const string xfile = conf["training_features"].as<string>();
const string yfile = conf["training_responses"].as<string>();
vector<string> labels; // only populated for non-continuous models
vector<TrainingInstance> training, test;
ReadLabeledInstances(xfile, yfile, is_continuous, &training, &labels);
if (conf.count("test_features")) {
const string txfile = conf["test_features"].as<string>();
const string tyfile = conf["test_responses"].as<string>();
ReadLabeledInstances(txfile, tyfile, is_continuous, &test, &labels);
}
if (conf.count("weights")) {
cerr << "Initial weights are not implemented, please implement." << endl;
// TODO read weights for categorical and continuous predictions
// can't use normal cdec weight framework
abort();
}
cerr << " Number of features: " << FD::NumFeats() << endl;
cerr << "Number of training examples: " << training.size() << endl;
const unsigned p = FD::NumFeats();
cout.precision(15);
if (conf.count("linear")) { // linear regression
vector<double> weights(1 + FD::NumFeats(), 0.0);
cerr << " Number of parameters: " << weights.size() << endl;
UnivariateSquaredLoss loss(training, p, l2);
LearnParameters(loss, l1, 1, memory_buffers, epsilon, &weights);
if (test.size())
cerr << "Held-out root MSE: " << loss.Evaluate(test, weights) << endl;
cout << p << "\t***CONTINUOUS***" << endl;
cout << "***BIAS***\t" << weights[0] << endl;
for (unsigned f = 0; f < p; ++f) {
const double w = weights[1 + f];
if (w)
cout << FD::Convert(f) << "\t" << w << endl;
}
} else { // logistic regression
vector<double> weights((1 + FD::NumFeats()) * (labels.size() - 1), 0.0);
cerr << " Number of parameters: " << weights.size() << endl;
cerr << " Number of labels: " << labels.size() << endl;
const unsigned K = labels.size();
const unsigned km1 = K - 1;
MulticlassLogLoss loss(training, K, p, l2);
LearnParameters(loss, l1, km1, memory_buffers, epsilon, &weights);
if (test.size())
cerr << "Held-out accuracy: " << loss.Evaluate(test, weights) << endl;
cout << p << "\t***CATEGORICAL***";
for (unsigned y = 0; y < K; ++y)
cout << '\t' << labels[y];
cout << endl;
for (unsigned y = 0; y < km1; ++y)
cout << labels[y] << "\t***BIAS***\t" << weights[y] << endl;
for (unsigned y = 0; y < km1; ++y) {
for (unsigned f = 0; f < p; ++f) {
const double w = weights[km1 + y * p + f];
if (w)
cout << labels[y] << "\t" << FD::Convert(f) << "\t" << w << endl;
}
}
}
return 0;
}
|