diff options
Diffstat (limited to 'utils/synutils/maxent-3.0')
-rw-r--r-- | utils/synutils/maxent-3.0/Makefile.am | 10 | ||||
-rw-r--r-- | utils/synutils/maxent-3.0/lbfgs.cpp | 108 | ||||
-rw-r--r-- | utils/synutils/maxent-3.0/lbfgs.h | 19 | ||||
-rw-r--r-- | utils/synutils/maxent-3.0/mathvec.h | 87 | ||||
-rw-r--r-- | utils/synutils/maxent-3.0/maxent.cpp | 703 | ||||
-rw-r--r-- | utils/synutils/maxent-3.0/maxent.h | 402 | ||||
-rw-r--r-- | utils/synutils/maxent-3.0/owlqn.cpp | 127 | ||||
-rw-r--r-- | utils/synutils/maxent-3.0/sgd.cpp | 193 |
8 files changed, 0 insertions, 1649 deletions
diff --git a/utils/synutils/maxent-3.0/Makefile.am b/utils/synutils/maxent-3.0/Makefile.am deleted file mode 100644 index 64bb038c..00000000 --- a/utils/synutils/maxent-3.0/Makefile.am +++ /dev/null @@ -1,10 +0,0 @@ -noinst_LIBRARIES = libtsuruoka_maxent.a - -libtsuruoka_maxent_a_SOURCES = \ - lbfgs.cpp \ - maxent.cpp \ - owlqn.cpp \ - sgd.cpp - -AM_CPPFLAGS = -W -Wall - diff --git a/utils/synutils/maxent-3.0/lbfgs.cpp b/utils/synutils/maxent-3.0/lbfgs.cpp deleted file mode 100644 index bd26f048..00000000 --- a/utils/synutils/maxent-3.0/lbfgs.cpp +++ /dev/null @@ -1,108 +0,0 @@ -#include <vector> -#include <iostream> -#include <cmath> -#include <stdio.h> -#include "mathvec.h" -#include "lbfgs.h" -#include "maxent.h" - -using namespace std; - -const static int M = LBFGS_M; -const static double LINE_SEARCH_ALPHA = 0.1; -const static double LINE_SEARCH_BETA = 0.5; - -// stopping criteria -int LBFGS_MAX_ITER = 300; -const static double MIN_GRAD_NORM = 0.0001; - -double ME_Model::backtracking_line_search(const Vec& x0, const Vec& grad0, - const double f0, const Vec& dx, - Vec& x, Vec& grad1) { - double t = 1.0 / LINE_SEARCH_BETA; - - double f; - do { - t *= LINE_SEARCH_BETA; - x = x0 + t * dx; - f = FunctionGradient(x.STLVec(), grad1.STLVec()); - // cout << "*"; - } while (f > f0 + LINE_SEARCH_ALPHA * t * dot_product(dx, grad0)); - - return f; -} - -// -// Jorge Nocedal, "Updating Quasi-Newton Matrices With Limited Storage", -// Mathematics of Computation, Vol. 35, No. 151, pp. 773-782, 1980. -// -Vec approximate_Hg(const int iter, const Vec& grad, const Vec s[], - const Vec y[], const double z[]) { - int offset, bound; - if (iter <= M) { - offset = 0; - bound = iter; - } else { - offset = iter - M; - bound = M; - } - - Vec q = grad; - double alpha[M], beta[M]; - for (int i = bound - 1; i >= 0; i--) { - const int j = (i + offset) % M; - alpha[i] = z[j] * dot_product(s[j], q); - q += -alpha[i] * y[j]; - } - if (iter > 0) { - const int j = (iter - 1) % M; - const double gamma = ((1.0 / z[j]) / dot_product(y[j], y[j])); - // static double gamma; - // if (gamma == 0) gamma = ((1.0 / z[j]) / dot_product(y[j], y[j])); - q *= gamma; - } - for (int i = 0; i <= bound - 1; i++) { - const int j = (i + offset) % M; - beta[i] = z[j] * dot_product(y[j], q); - q += s[j] * (alpha[i] - beta[i]); - } - - return q; -} - -vector<double> ME_Model::perform_LBFGS(const vector<double>& x0) { - const size_t dim = x0.size(); - Vec x = x0; - - Vec grad(dim), dx(dim); - double f = FunctionGradient(x.STLVec(), grad.STLVec()); - - Vec s[M], y[M]; - double z[M]; // rho - - for (int iter = 0; iter < LBFGS_MAX_ITER; iter++) { - - fprintf(stderr, "%3d obj(err) = %f (%6.4f)", iter + 1, -f, _train_error); - if (_nheldout > 0) { - const double heldout_logl = heldout_likelihood(); - fprintf(stderr, " heldout_logl(err) = %f (%6.4f)", heldout_logl, - _heldout_error); - } - fprintf(stderr, "\n"); - - if (sqrt(dot_product(grad, grad)) < MIN_GRAD_NORM) break; - - dx = -1 * approximate_Hg(iter, grad, s, y, z); - - Vec x1(dim), grad1(dim); - f = backtracking_line_search(x, grad, f, dx, x1, grad1); - - s[iter % M] = x1 - x; - y[iter % M] = grad1 - grad; - z[iter % M] = 1.0 / dot_product(y[iter % M], s[iter % M]); - x = x1; - grad = grad1; - } - - return x.STLVec(); -} diff --git a/utils/synutils/maxent-3.0/lbfgs.h b/utils/synutils/maxent-3.0/lbfgs.h deleted file mode 100644 index ed5cd944..00000000 --- a/utils/synutils/maxent-3.0/lbfgs.h +++ /dev/null @@ -1,19 +0,0 @@ -#ifndef _LBFGS_H_ -#define _LBFGS_H_ - -// template<class FuncGrad> -// std::vector<double> -// perform_LBFGS(FuncGrad func_grad, const std::vector<double> & x0); - -std::vector<double> perform_LBFGS( - double (*func_grad)(const std::vector<double> &, std::vector<double> &), - const std::vector<double> &x0); - -std::vector<double> perform_OWLQN( - double (*func_grad)(const std::vector<double> &, std::vector<double> &), - const std::vector<double> &x0, const double C); - -// const int LBFGS_M = 7; -const int LBFGS_M = 10; - -#endif diff --git a/utils/synutils/maxent-3.0/mathvec.h b/utils/synutils/maxent-3.0/mathvec.h deleted file mode 100644 index f8c60e5d..00000000 --- a/utils/synutils/maxent-3.0/mathvec.h +++ /dev/null @@ -1,87 +0,0 @@ -#ifndef _MATH_VECTOR_H_ -#define _MATH_VECTOR_H_ - -#include <vector> -#include <iostream> -#include <cassert> - -class Vec { - private: - std::vector<double> _v; - - public: - Vec(const size_t n = 0, const double val = 0) { _v.resize(n, val); } - Vec(const std::vector<double>& v) : _v(v) {} - const std::vector<double>& STLVec() const { return _v; } - std::vector<double>& STLVec() { return _v; } - size_t Size() const { return _v.size(); } - double& operator[](int i) { return _v[i]; } - const double& operator[](int i) const { return _v[i]; } - Vec& operator+=(const Vec& b) { - assert(b.Size() == _v.size()); - for (size_t i = 0; i < _v.size(); i++) { - _v[i] += b[i]; - } - return *this; - } - Vec& operator*=(const double c) { - for (size_t i = 0; i < _v.size(); i++) { - _v[i] *= c; - } - return *this; - } - void Project(const Vec& y) { - for (size_t i = 0; i < _v.size(); i++) { - // if (sign(_v[i]) != sign(y[i])) _v[i] = 0; - if (_v[i] * y[i] <= 0) _v[i] = 0; - } - } -}; - -inline double dot_product(const Vec& a, const Vec& b) { - double sum = 0; - for (size_t i = 0; i < a.Size(); i++) { - sum += a[i] * b[i]; - } - return sum; -} - -inline std::ostream& operator<<(std::ostream& s, const Vec& a) { - s << "("; - for (size_t i = 0; i < a.Size(); i++) { - if (i != 0) s << ", "; - s << a[i]; - } - s << ")"; - return s; -} - -inline const Vec operator+(const Vec& a, const Vec& b) { - Vec v(a.Size()); - assert(a.Size() == b.Size()); - for (size_t i = 0; i < a.Size(); i++) { - v[i] = a[i] + b[i]; - } - return v; -} - -inline const Vec operator-(const Vec& a, const Vec& b) { - Vec v(a.Size()); - assert(a.Size() == b.Size()); - for (size_t i = 0; i < a.Size(); i++) { - v[i] = a[i] - b[i]; - } - return v; -} - -inline const Vec operator*(const Vec& a, const double c) { - Vec v(a.Size()); - for (size_t i = 0; i < a.Size(); i++) { - v[i] = a[i] * c; - } - return v; -} - -inline const Vec operator*(const double c, const Vec& a) { return a * c; } - -#endif diff --git a/utils/synutils/maxent-3.0/maxent.cpp b/utils/synutils/maxent-3.0/maxent.cpp deleted file mode 100644 index 8d00ac1d..00000000 --- a/utils/synutils/maxent-3.0/maxent.cpp +++ /dev/null @@ -1,703 +0,0 @@ -/* - * $Id: maxent.cpp,v 1.1.1.1 2007/05/15 08:30:35 kyoshida Exp $ - */ - -#include "maxent.h" -#include <cmath> -#include <cstdio> -#include "lbfgs.h" - -using namespace std; - -double ME_Model::FunctionGradient(const vector<double>& x, - vector<double>& grad) { - assert((int)_fb.Size() == x.size()); - for (size_t i = 0; i < x.size(); i++) { - _vl[i] = x[i]; - } - - double score = update_model_expectation(); - - if (_l2reg == 0) { - for (size_t i = 0; i < x.size(); i++) { - grad[i] = -(_vee[i] - _vme[i]); - } - } else { - const double c = _l2reg * 2; - for (size_t i = 0; i < x.size(); i++) { - grad[i] = -(_vee[i] - _vme[i] - c * _vl[i]); - } - } - - return -score; -} - -int ME_Model::perform_GIS(int C) { - cerr << "C = " << C << endl; - C = 1; - cerr << "performing AGIS" << endl; - vector<double> pre_v; - double pre_logl = -999999; - for (int iter = 0; iter < 200; iter++) { - - double logl = update_model_expectation(); - fprintf(stderr, "iter = %2d C = %d f = %10.7f train_err = %7.5f", iter, - C, logl, _train_error); - if (_heldout.size() > 0) { - double hlogl = heldout_likelihood(); - fprintf(stderr, " heldout_logl(err) = %f (%6.4f)", hlogl, - _heldout_error); - } - cerr << endl; - - if (logl < pre_logl) { - C += 1; - _vl = pre_v; - iter--; - continue; - } - if (C > 1 && iter % 10 == 0) C--; - - pre_logl = logl; - pre_v = _vl; - for (int i = 0; i < _fb.Size(); i++) { - double coef = _vee[i] / _vme[i]; - _vl[i] += log(coef) / C; - } - } - cerr << endl; - - return 0; -} - -int ME_Model::perform_QUASI_NEWTON() { - const int dim = _fb.Size(); - vector<double> x0(dim); - - for (int i = 0; i < dim; i++) { - x0[i] = _vl[i]; - } - - vector<double> x; - if (_l1reg > 0) { - cerr << "performing OWLQN" << endl; - x = perform_OWLQN(x0, _l1reg); - } else { - cerr << "performing LBFGS" << endl; - x = perform_LBFGS(x0); - } - - for (int i = 0; i < dim; i++) { - _vl[i] = x[i]; - } - - return 0; -} - -int ME_Model::conditional_probability(const Sample& s, - std::vector<double>& membp) const { - // int num_classes = membp.size(); - double sum = 0; - int max_label = -1; - // double maxp = 0; - - vector<double> powv(_num_classes, 0.0); - for (vector<int>::const_iterator j = s.positive_features.begin(); - j != s.positive_features.end(); j++) { - for (vector<int>::const_iterator k = _feature2mef[*j].begin(); - k != _feature2mef[*j].end(); k++) { - powv[_fb.Feature(*k).label()] += _vl[*k]; - } - } - for (vector<pair<int, double> >::const_iterator j = s.rvfeatures.begin(); - j != s.rvfeatures.end(); j++) { - for (vector<int>::const_iterator k = _feature2mef[j->first].begin(); - k != _feature2mef[j->first].end(); k++) { - powv[_fb.Feature(*k).label()] += _vl[*k] * j->second; - } - } - - std::vector<double>::const_iterator pmax = - max_element(powv.begin(), powv.end()); - double offset = max(0.0, *pmax - 700); // to avoid overflow - for (int label = 0; label < _num_classes; label++) { - double pow = powv[label] - offset; - double prod = exp(pow); - // cout << pow << " " << prod << ", "; - // if (_ref_modelp != NULL) prod *= _train_refpd[n][label]; - if (_ref_modelp != NULL) prod *= s.ref_pd[label]; - assert(prod != 0); - membp[label] = prod; - sum += prod; - } - for (int label = 0; label < _num_classes; label++) { - membp[label] /= sum; - if (membp[label] > membp[max_label]) max_label = label; - } - assert(max_label >= 0); - return max_label; -} - -int ME_Model::make_feature_bag(const int cutoff) { - int max_num_features = 0; - -// count the occurrences of features -#ifdef USE_HASH_MAP - typedef __gnu_cxx::hash_map<unsigned int, int> map_type; -#else - typedef std::map<unsigned int, int> map_type; -#endif - map_type count; - if (cutoff > 0) { - for (std::vector<Sample>::const_iterator i = _vs.begin(); i != _vs.end(); - i++) { - for (std::vector<int>::const_iterator j = i->positive_features.begin(); - j != i->positive_features.end(); j++) { - count[ME_Feature(i->label, *j).body()]++; - } - for (std::vector<pair<int, double> >::const_iterator j = - i->rvfeatures.begin(); - j != i->rvfeatures.end(); j++) { - count[ME_Feature(i->label, j->first).body()]++; - } - } - } - - int n = 0; - for (std::vector<Sample>::const_iterator i = _vs.begin(); i != _vs.end(); - i++, n++) { - max_num_features = - max(max_num_features, (int)(i->positive_features.size())); - for (std::vector<int>::const_iterator j = i->positive_features.begin(); - j != i->positive_features.end(); j++) { - const ME_Feature feature(i->label, *j); - // if (cutoff > 0 && count[feature.body()] < cutoff) continue; - if (cutoff > 0 && count[feature.body()] <= cutoff) continue; - _fb.Put(feature); - // cout << i->label << "\t" << *j << "\t" << id << endl; - // feature2sample[id].push_back(n); - } - for (std::vector<pair<int, double> >::const_iterator j = - i->rvfeatures.begin(); - j != i->rvfeatures.end(); j++) { - const ME_Feature feature(i->label, j->first); - // if (cutoff > 0 && count[feature.body()] < cutoff) continue; - if (cutoff > 0 && count[feature.body()] <= cutoff) continue; - _fb.Put(feature); - } - } - count.clear(); - - // cerr << "num_classes = " << _num_classes << endl; - // cerr << "max_num_features = " << max_num_features << endl; - - init_feature2mef(); - - return max_num_features; -} - -double ME_Model::heldout_likelihood() { - double logl = 0; - int ncorrect = 0; - for (std::vector<Sample>::const_iterator i = _heldout.begin(); - i != _heldout.end(); i++) { - vector<double> membp(_num_classes); - int l = classify(*i, membp); - logl += log(membp[i->label]); - if (l == i->label) ncorrect++; - } - _heldout_error = 1 - (double)ncorrect / _heldout.size(); - - return logl /= _heldout.size(); -} - -double ME_Model::update_model_expectation() { - double logl = 0; - int ncorrect = 0; - - _vme.resize(_fb.Size()); - for (int i = 0; i < _fb.Size(); i++) _vme[i] = 0; - - int n = 0; - for (vector<Sample>::const_iterator i = _vs.begin(); i != _vs.end(); - i++, n++) { - vector<double> membp(_num_classes); - int max_label = conditional_probability(*i, membp); - - logl += log(membp[i->label]); - // cout << membp[*i] << " " << logl << " "; - if (max_label == i->label) ncorrect++; - - // model_expectation - for (vector<int>::const_iterator j = i->positive_features.begin(); - j != i->positive_features.end(); j++) { - for (vector<int>::const_iterator k = _feature2mef[*j].begin(); - k != _feature2mef[*j].end(); k++) { - _vme[*k] += membp[_fb.Feature(*k).label()]; - } - } - for (vector<pair<int, double> >::const_iterator j = i->rvfeatures.begin(); - j != i->rvfeatures.end(); j++) { - for (vector<int>::const_iterator k = _feature2mef[j->first].begin(); - k != _feature2mef[j->first].end(); k++) { - _vme[*k] += membp[_fb.Feature(*k).label()] * j->second; - } - } - } - - for (int i = 0; i < _fb.Size(); i++) { - _vme[i] /= _vs.size(); - } - - _train_error = 1 - (double)ncorrect / _vs.size(); - - logl /= _vs.size(); - - if (_l2reg > 0) { - const double c = _l2reg; - for (int i = 0; i < _fb.Size(); i++) { - logl -= _vl[i] * _vl[i] * c; - } - } - - // logl /= _vs.size(); - - // fprintf(stderr, "iter =%3d logl = %10.7f train_acc = %7.5f\n", iter, - // logl, (double)ncorrect/train.size()); - // fprintf(stderr, "logl = %10.7f train_acc = %7.5f\n", logl, - // (double)ncorrect/_train.size()); - - return logl; -} - -int ME_Model::train(const vector<ME_Sample>& vms) { - _vs.clear(); - for (vector<ME_Sample>::const_iterator i = vms.begin(); i != vms.end(); i++) { - add_training_sample(*i); - } - - return train(); -} - -void ME_Model::add_training_sample(const ME_Sample& mes) { - Sample s; - s.label = _label_bag.Put(mes.label); - if (s.label > ME_Feature::MAX_LABEL_TYPES) { - cerr << "error: too many types of labels." << endl; - exit(1); - } - for (vector<string>::const_iterator j = mes.features.begin(); - j != mes.features.end(); j++) { - s.positive_features.push_back(_featurename_bag.Put(*j)); - } - for (vector<pair<string, double> >::const_iterator j = mes.rvfeatures.begin(); - j != mes.rvfeatures.end(); j++) { - s.rvfeatures.push_back( - pair<int, double>(_featurename_bag.Put(j->first), j->second)); - } - if (_ref_modelp != NULL) { - ME_Sample tmp = mes; - ; - s.ref_pd = _ref_modelp->classify(tmp); - } - // cout << s.label << "\t"; - // for (vector<int>::const_iterator j = s.positive_features.begin(); j != - // s.positive_features.end(); j++){ - // cout << *j << " "; - // } - // cout << endl; - - _vs.push_back(s); -} - -int ME_Model::train() { - if (_l1reg > 0 && _l2reg > 0) { - cerr << "error: L1 and L2 regularizers cannot be used simultaneously." - << endl; - return 0; - } - if (_vs.size() == 0) { - cerr << "error: no training data." << endl; - return 0; - } - if (_nheldout >= (int)_vs.size()) { - cerr << "error: too much heldout data. no training data is available." - << endl; - return 0; - } - // if (_nheldout > 0) random_shuffle(_vs.begin(), _vs.end()); - - int max_label = 0; - for (std::vector<Sample>::const_iterator i = _vs.begin(); i != _vs.end(); - i++) { - max_label = max(max_label, i->label); - } - _num_classes = max_label + 1; - if (_num_classes != _label_bag.Size()) { - cerr << "warning: _num_class != _label_bag.Size()" << endl; - } - - if (_ref_modelp != NULL) { - cerr << "setting reference distribution..."; - for (int i = 0; i < _ref_modelp->num_classes(); i++) { - _label_bag.Put(_ref_modelp->get_class_label(i)); - } - _num_classes = _label_bag.Size(); - for (vector<Sample>::iterator i = _vs.begin(); i != _vs.end(); i++) { - set_ref_dist(*i); - } - cerr << "done" << endl; - } - - for (int i = 0; i < _nheldout; i++) { - _heldout.push_back(_vs.back()); - _vs.pop_back(); - } - - sort(_vs.begin(), _vs.end()); - - int cutoff = 0; - if (cutoff > 0) cerr << "cutoff threshold = " << cutoff << endl; - if (_l1reg > 0) cerr << "L1 regularizer = " << _l1reg << endl; - if (_l2reg > 0) cerr << "L2 regularizer = " << _l2reg << endl; - - // normalize - _l1reg /= _vs.size(); - _l2reg /= _vs.size(); - - cerr << "preparing for estimation..."; - make_feature_bag(cutoff); - // _vs.clear(); - cerr << "done" << endl; - cerr << "number of samples = " << _vs.size() << endl; - cerr << "number of features = " << _fb.Size() << endl; - - cerr << "calculating empirical expectation..."; - _vee.resize(_fb.Size()); - for (int i = 0; i < _fb.Size(); i++) { - _vee[i] = 0; - } - for (int n = 0; n < (int)_vs.size(); n++) { - const Sample* i = &_vs[n]; - for (vector<int>::const_iterator j = i->positive_features.begin(); - j != i->positive_features.end(); j++) { - for (vector<int>::const_iterator k = _feature2mef[*j].begin(); - k != _feature2mef[*j].end(); k++) { - if (_fb.Feature(*k).label() == i->label) _vee[*k] += 1.0; - } - } - - for (vector<pair<int, double> >::const_iterator j = i->rvfeatures.begin(); - j != i->rvfeatures.end(); j++) { - for (vector<int>::const_iterator k = _feature2mef[j->first].begin(); - k != _feature2mef[j->first].end(); k++) { - if (_fb.Feature(*k).label() == i->label) _vee[*k] += j->second; - } - } - } - for (int i = 0; i < _fb.Size(); i++) { - _vee[i] /= _vs.size(); - } - cerr << "done" << endl; - - _vl.resize(_fb.Size()); - for (int i = 0; i < _fb.Size(); i++) _vl[i] = 0.0; - - if (_optimization_method == SGD) { - perform_SGD(); - } else { - perform_QUASI_NEWTON(); - } - - int num_active = 0; - for (int i = 0; i < _fb.Size(); i++) { - if (_vl[i] != 0) num_active++; - } - cerr << "number of active features = " << num_active << endl; - - return 0; -} - -void ME_Model::get_features(list<pair<pair<string, string>, double> >& fl) { - fl.clear(); - // for (int i = 0; i < _fb.Size(); i++) { - // ME_Feature f = _fb.Feature(i); - // fl.push_back( make_pair(make_pair(_label_bag.Str(f.label()), - // _featurename_bag.Str(f.feature())), _vl[i])); - // } - for (MiniStringBag::map_type::const_iterator i = _featurename_bag.begin(); - i != _featurename_bag.end(); i++) { - for (int j = 0; j < _label_bag.Size(); j++) { - string label = _label_bag.Str(j); - string history = i->first; - int id = _fb.Id(ME_Feature(j, i->second)); - if (id < 0) continue; - fl.push_back(make_pair(make_pair(label, history), _vl[id])); - } - } -} - -void ME_Model::clear() { - _vl.clear(); - _label_bag.Clear(); - _featurename_bag.Clear(); - _fb.Clear(); - _feature2mef.clear(); - _vee.clear(); - _vme.clear(); - _vs.clear(); - _heldout.clear(); -} - -bool ME_Model::load_from_file(const string& filename) { - FILE* fp = fopen(filename.c_str(), "r"); - if (!fp) { - cerr << "error: cannot open " << filename << "!" << endl; - return false; - } - - _vl.clear(); - _label_bag.Clear(); - _featurename_bag.Clear(); - _fb.Clear(); - char buf[1024]; - while (fgets(buf, 1024, fp)) { - string line(buf); - string::size_type t1 = line.find_first_of('\t'); - string::size_type t2 = line.find_last_of('\t'); - string classname = line.substr(0, t1); - string featurename = line.substr(t1 + 1, t2 - (t1 + 1)); - float lambda; - string w = line.substr(t2 + 1); - sscanf(w.c_str(), "%f", &lambda); - - int label = _label_bag.Put(classname); - int feature = _featurename_bag.Put(featurename); - _fb.Put(ME_Feature(label, feature)); - _vl.push_back(lambda); - } - - _num_classes = _label_bag.Size(); - - init_feature2mef(); - - fclose(fp); - - return true; -} - -void ME_Model::init_feature2mef() { - _feature2mef.clear(); - for (int i = 0; i < _featurename_bag.Size(); i++) { - vector<int> vi; - for (int k = 0; k < _num_classes; k++) { - int id = _fb.Id(ME_Feature(k, i)); - if (id >= 0) vi.push_back(id); - } - _feature2mef.push_back(vi); - } -} - -bool ME_Model::load_from_array(const ME_Model_Data data[]) { - _vl.clear(); - for (int i = 0;; i++) { - if (string(data[i].label) == "///") break; - int label = _label_bag.Put(data[i].label); - int feature = _featurename_bag.Put(data[i].feature); - _fb.Put(ME_Feature(label, feature)); - _vl.push_back(data[i].weight); - } - _num_classes = _label_bag.Size(); - - init_feature2mef(); - - return true; -} - -bool ME_Model::save_to_file(const string& filename, const double th) const { - FILE* fp = fopen(filename.c_str(), "w"); - if (!fp) { - cerr << "error: cannot open " << filename << "!" << endl; - return false; - } - - // for (int i = 0; i < _fb.Size(); i++) { - // if (_vl[i] == 0) continue; // ignore zero-weight features - // ME_Feature f = _fb.Feature(i); - // fprintf(fp, "%s\t%s\t%f\n", _label_bag.Str(f.label()).c_str(), - // _featurename_bag.Str(f.feature()).c_str(), _vl[i]); - // } - for (MiniStringBag::map_type::const_iterator i = _featurename_bag.begin(); - i != _featurename_bag.end(); i++) { - for (int j = 0; j < _label_bag.Size(); j++) { - string label = _label_bag.Str(j); - string history = i->first; - int id = _fb.Id(ME_Feature(j, i->second)); - if (id < 0) continue; - if (_vl[id] == 0) continue; // ignore zero-weight features - if (fabs(_vl[id]) < th) continue; // cut off low-weight features - fprintf(fp, "%s\t%s\t%f\n", label.c_str(), history.c_str(), _vl[id]); - } - } - - fclose(fp); - - return true; -} - -void ME_Model::set_ref_dist(Sample& s) const { - vector<double> v0 = s.ref_pd; - vector<double> v(_num_classes); - for (unsigned int i = 0; i < v.size(); i++) { - v[i] = 0; - string label = get_class_label(i); - int id_ref = _ref_modelp->get_class_id(label); - if (id_ref != -1) { - v[i] = v0[id_ref]; - } - if (v[i] == 0) v[i] = 0.001; // to avoid -inf logl - } - s.ref_pd = v; -} - -int ME_Model::classify(const Sample& nbs, vector<double>& membp) const { - // vector<double> membp(_num_classes); - assert(_num_classes == (int)membp.size()); - conditional_probability(nbs, membp); - int max_label = 0; - double max = 0.0; - for (int i = 0; i < (int)membp.size(); i++) { - // cout << membp[i] << " "; - if (membp[i] > max) { - max_label = i; - max = membp[i]; - } - } - // cout << endl; - return max_label; -} - -vector<double> ME_Model::classify(ME_Sample& mes) const { - Sample s; - for (vector<string>::const_iterator j = mes.features.begin(); - j != mes.features.end(); j++) { - int id = _featurename_bag.Id(*j); - if (id >= 0) s.positive_features.push_back(id); - } - for (vector<pair<string, double> >::const_iterator j = mes.rvfeatures.begin(); - j != mes.rvfeatures.end(); j++) { - int id = _featurename_bag.Id(j->first); - if (id >= 0) { - s.rvfeatures.push_back(pair<int, double>(id, j->second)); - } - } - if (_ref_modelp != NULL) { - s.ref_pd = _ref_modelp->classify(mes); - set_ref_dist(s); - } - - vector<double> vp(_num_classes); - int label = classify(s, vp); - mes.label = get_class_label(label); - return vp; -} - -/* - * $Log: maxent.cpp,v $ - * Revision 1.1.1.1 2007/05/15 08:30:35 kyoshida - * stepp tagger, by Okanohara and Tsuruoka - * - * Revision 1.28 2006/08/21 17:30:38 tsuruoka - * use MAX_LABEL_TYPES - * - * Revision 1.27 2006/07/25 13:19:53 tsuruoka - * sort _vs[] - * - * Revision 1.26 2006/07/18 11:13:15 tsuruoka - * modify comments - * - * Revision 1.25 2006/07/18 10:02:15 tsuruoka - * remove sample2feature[] - * speed up conditional_probability() - * - * Revision 1.24 2006/07/18 05:10:51 tsuruoka - * add ref_dist - * - * Revision 1.23 2005/12/24 07:05:32 tsuruoka - * modify conditional_probability() to avoid overflow - * - * Revision 1.22 2005/12/24 07:01:25 tsuruoka - * add cutoff for real-valued features - * - * Revision 1.21 2005/12/23 10:33:02 tsuruoka - * support real-valued features - * - * Revision 1.20 2005/12/23 09:15:29 tsuruoka - * modify _train to reduce memory consumption - * - * Revision 1.19 2005/10/28 13:10:14 tsuruoka - * fix for overflow (thanks to Ming Li) - * - * Revision 1.18 2005/10/28 13:03:07 tsuruoka - * add progress_bar - * - * Revision 1.17 2005/09/12 13:51:16 tsuruoka - * Sample: list -> vector - * - * Revision 1.16 2005/09/12 13:27:10 tsuruoka - * add add_training_sample() - * - * Revision 1.15 2005/04/27 11:22:27 tsuruoka - * bugfix - * ME_Sample: list -> vector - * - * Revision 1.14 2005/04/27 10:00:42 tsuruoka - * remove tmpfb - * - * Revision 1.13 2005/04/26 14:25:53 tsuruoka - * add MiniStringBag, USE_HASH_MAP - * - * Revision 1.12 2005/02/11 10:20:08 tsuruoka - * modify cutoff - * - * Revision 1.11 2004/10/04 05:50:25 tsuruoka - * add Clear() - * - * Revision 1.10 2004/08/26 16:52:26 tsuruoka - * fix load_from_file() - * - * Revision 1.9 2004/08/09 12:27:21 tsuruoka - * change messages - * - * Revision 1.8 2004/08/04 13:55:18 tsuruoka - * modify _sample2feature - * - * Revision 1.7 2004/07/28 13:42:58 tsuruoka - * add AGIS - * - * Revision 1.6 2004/07/28 05:54:13 tsuruoka - * get_class_name() -> get_class_label() - * ME_Feature: bugfix - * - * Revision 1.5 2004/07/27 16:58:47 tsuruoka - * modify the interface of classify() - * - * Revision 1.4 2004/07/26 17:23:46 tsuruoka - * _sample2feature: list -> vector - * - * Revision 1.3 2004/07/26 15:49:23 tsuruoka - * modify ME_Feature - * - * Revision 1.2 2004/07/26 13:52:18 tsuruoka - * modify cutoff - * - * Revision 1.1 2004/07/26 13:10:55 tsuruoka - * add files - * - * Revision 1.20 2004/07/22 08:34:45 tsuruoka - * modify _sample2feature[] - * - * Revision 1.19 2004/07/21 16:33:01 tsuruoka - * remove some comments - * - */ diff --git a/utils/synutils/maxent-3.0/maxent.h b/utils/synutils/maxent-3.0/maxent.h deleted file mode 100644 index 88a04e25..00000000 --- a/utils/synutils/maxent-3.0/maxent.h +++ /dev/null @@ -1,402 +0,0 @@ -/* - * $Id: maxent.h,v 1.1.1.1 2007/05/15 08:30:35 kyoshida Exp $ - */ - -#ifndef __MAXENT_H_ -#define __MAXENT_H_ - -#include <string> -#include <vector> -#include <list> -#include <map> -#include <algorithm> -#include <iostream> -#include <string> -#include <cassert> -#include "mathvec.h" - -#define USE_HASH_MAP // if you encounter errors with hash, try commenting out - // this line. (the program will be a bit slower, though) -#ifdef USE_HASH_MAP -#include <ext/hash_map> -#endif - -// -// data format for each sample for training/testing -// -struct ME_Sample { - public: - ME_Sample() : label("") {}; - ME_Sample(const std::string& l) : label(l) {}; - void set_label(const std::string& l) { label = l; } - - // to add a binary feature - void add_feature(const std::string& f) { features.push_back(f); } - - // to add a real-valued feature - void add_feature(const std::string& s, const double d) { - rvfeatures.push_back(std::pair<std::string, double>(s, d)); - } - - public: - std::string label; - std::vector<std::string> features; - std::vector<std::pair<std::string, double> > rvfeatures; - - // obsolete - void add_feature(const std::pair<std::string, double>& f) { - rvfeatures.push_back(f); // real-valued features - } -}; - -// -// for those who want to use load_from_array() -// -typedef struct ME_Model_Data { - char* label; - char* feature; - double weight; -} ME_Model_Data; - -class ME_Model { - public: - void add_training_sample(const ME_Sample& s); - int train(); - std::vector<double> classify(ME_Sample& s) const; - bool load_from_file(const std::string& filename); - bool save_to_file(const std::string& filename, const double th = 0) const; - int num_classes() const { return _num_classes; } - std::string get_class_label(int i) const { return _label_bag.Str(i); } - int get_class_id(const std::string& s) const { return _label_bag.Id(s); } - void get_features( - std::list<std::pair<std::pair<std::string, std::string>, double> >& fl); - void set_heldout(const int h, const int n = 0) { - _nheldout = h; - _early_stopping_n = n; - }; - void use_l1_regularizer(const double v) { _l1reg = v; } - void use_l2_regularizer(const double v) { _l2reg = v; } - void use_SGD(int iter = 30, double eta0 = 1, double alpha = 0.85) { - _optimization_method = SGD; - SGD_ITER = iter; - SGD_ETA0 = eta0; - SGD_ALPHA = alpha; - } - bool load_from_array(const ME_Model_Data data[]); - void set_reference_model(const ME_Model& ref_model) { - _ref_modelp = &ref_model; - }; - void clear(); - - ME_Model() { - _l1reg = _l2reg = 0; - _nheldout = 0; - _early_stopping_n = 0; - _ref_modelp = NULL; - _optimization_method = LBFGS; - } - - public: - // obsolete. just for downward compatibility - int train(const std::vector<ME_Sample>& train); - - private: - enum OPTIMIZATION_METHOD { - LBFGS, - OWLQN, - SGD - } _optimization_method; - // OWLQN and SGD are available only for L1-regularization - - int SGD_ITER; - double SGD_ETA0; - double SGD_ALPHA; - - double _l1reg, _l2reg; - - struct Sample { - int label; - std::vector<int> positive_features; - std::vector<std::pair<int, double> > rvfeatures; - std::vector<double> ref_pd; // reference probability distribution - bool operator<(const Sample& x) const { - for (unsigned int i = 0; i < positive_features.size(); i++) { - if (i >= x.positive_features.size()) return false; - int v0 = positive_features[i]; - int v1 = x.positive_features[i]; - if (v0 < v1) return true; - if (v0 > v1) return false; - } - return false; - } - }; - - struct ME_Feature { - enum { - MAX_LABEL_TYPES = 255 - }; - - // ME_Feature(const int l, const int f) : _body((l << 24) + f) { - // assert(l >= 0 && l < 256); - // assert(f >= 0 && f <= 0xffffff); - // }; - // int label() const { return _body >> 24; } - // int feature() const { return _body & 0xffffff; } - ME_Feature(const int l, const int f) : _body((f << 8) + l) { - assert(l >= 0 && l <= MAX_LABEL_TYPES); - assert(f >= 0 && f <= 0xffffff); - }; - int label() const { return _body & 0xff; } - int feature() const { return _body >> 8; } - unsigned int body() const { return _body; } - - private: - unsigned int _body; - }; - - struct ME_FeatureBag { -#ifdef USE_HASH_MAP - typedef __gnu_cxx::hash_map<unsigned int, int> map_type; -#else - typedef std::map<unsigned int, int> map_type; -#endif - map_type mef2id; - std::vector<ME_Feature> id2mef; - int Put(const ME_Feature& i) { - map_type::const_iterator j = mef2id.find(i.body()); - if (j == mef2id.end()) { - int id = id2mef.size(); - id2mef.push_back(i); - mef2id[i.body()] = id; - return id; - } - return j->second; - } - int Id(const ME_Feature& i) const { - map_type::const_iterator j = mef2id.find(i.body()); - if (j == mef2id.end()) { - return -1; - } - return j->second; - } - ME_Feature Feature(int id) const { - assert(id >= 0 && id < (int)id2mef.size()); - return id2mef[id]; - } - int Size() const { return id2mef.size(); } - void Clear() { - mef2id.clear(); - id2mef.clear(); - } - }; - - struct hashfun_str { - size_t operator()(const std::string& s) const { - assert(sizeof(int) == 4 && sizeof(char) == 1); - const int* p = reinterpret_cast<const int*>(s.c_str()); - size_t v = 0; - int n = s.size() / 4; - for (int i = 0; i < n; i++, p++) { - // v ^= *p; - v ^= *p << (4 * (i % 2)); // note) 0 <= char < 128 - } - int m = s.size() % 4; - for (int i = 0; i < m; i++) { - v ^= s[4 * n + i] << (i * 8); - } - return v; - } - }; - - struct MiniStringBag { -#ifdef USE_HASH_MAP - typedef __gnu_cxx::hash_map<std::string, int, hashfun_str> map_type; -#else - typedef std::map<std::string, int> map_type; -#endif - int _size; - map_type str2id; - MiniStringBag() : _size(0) {} - int Put(const std::string& i) { - map_type::const_iterator j = str2id.find(i); - if (j == str2id.end()) { - int id = _size; - _size++; - str2id[i] = id; - return id; - } - return j->second; - } - int Id(const std::string& i) const { - map_type::const_iterator j = str2id.find(i); - if (j == str2id.end()) return -1; - return j->second; - } - int Size() const { return _size; } - void Clear() { - str2id.clear(); - _size = 0; - } - map_type::const_iterator begin() const { return str2id.begin(); } - map_type::const_iterator end() const { return str2id.end(); } - }; - - struct StringBag : public MiniStringBag { - std::vector<std::string> id2str; - int Put(const std::string& i) { - map_type::const_iterator j = str2id.find(i); - if (j == str2id.end()) { - int id = id2str.size(); - id2str.push_back(i); - str2id[i] = id; - return id; - } - return j->second; - } - std::string Str(const int id) const { - assert(id >= 0 && id < (int)id2str.size()); - return id2str[id]; - } - int Size() const { return id2str.size(); } - void Clear() { - str2id.clear(); - id2str.clear(); - } - }; - - std::vector<Sample> _vs; // vector of training_samples - StringBag _label_bag; - MiniStringBag _featurename_bag; - std::vector<double> _vl; // vector of lambda - ME_FeatureBag _fb; - int _num_classes; - std::vector<double> _vee; // empirical expectation - std::vector<double> _vme; // empirical expectation - std::vector<std::vector<int> > _feature2mef; - std::vector<Sample> _heldout; - double _train_error; // current error rate on the training data - double _heldout_error; // current error rate on the heldout data - int _nheldout; - int _early_stopping_n; - std::vector<double> _vhlogl; - const ME_Model* _ref_modelp; - - double heldout_likelihood(); - int conditional_probability(const Sample& nbs, - std::vector<double>& membp) const; - int make_feature_bag(const int cutoff); - int classify(const Sample& nbs, std::vector<double>& membp) const; - double update_model_expectation(); - int perform_QUASI_NEWTON(); - int perform_SGD(); - int perform_GIS(int C); - std::vector<double> perform_LBFGS(const std::vector<double>& x0); - std::vector<double> perform_OWLQN(const std::vector<double>& x0, - const double C); - double backtracking_line_search(const Vec& x0, const Vec& grad0, - const double f0, const Vec& dx, Vec& x, - Vec& grad1); - double regularized_func_grad(const double C, const Vec& x, Vec& grad); - double constrained_line_search(double C, const Vec& x0, const Vec& grad0, - const double f0, const Vec& dx, Vec& x, - Vec& grad1); - - void set_ref_dist(Sample& s) const; - void init_feature2mef(); - - double FunctionGradient(const std::vector<double>& x, - std::vector<double>& grad); - static double FunctionGradientWrapper(const std::vector<double>& x, - std::vector<double>& grad); -}; - -#endif - -/* - * $Log: maxent.h,v $ - * Revision 1.1.1.1 2007/05/15 08:30:35 kyoshida - * stepp tagger, by Okanohara and Tsuruoka - * - * Revision 1.24 2006/08/21 17:30:38 tsuruoka - * use MAX_LABEL_TYPES - * - * Revision 1.23 2006/07/25 13:19:53 tsuruoka - * sort _vs[] - * - * Revision 1.22 2006/07/18 11:13:15 tsuruoka - * modify comments - * - * Revision 1.21 2006/07/18 10:02:15 tsuruoka - * remove sample2feature[] - * speed up conditional_probability() - * - * Revision 1.20 2006/07/18 05:10:51 tsuruoka - * add ref_dist - * - * Revision 1.19 2005/12/23 10:33:02 tsuruoka - * support real-valued features - * - * Revision 1.18 2005/12/23 09:15:29 tsuruoka - * modify _train to reduce memory consumption - * - * Revision 1.17 2005/10/28 13:02:34 tsuruoka - * set_heldout(): add default value - * Feature() - * - * Revision 1.16 2005/09/12 13:51:16 tsuruoka - * Sample: list -> vector - * - * Revision 1.15 2005/09/12 13:27:10 tsuruoka - * add add_training_sample() - * - * Revision 1.14 2005/04/27 11:22:27 tsuruoka - * bugfix - * ME_Sample: list -> vector - * - * Revision 1.13 2005/04/27 10:20:19 tsuruoka - * MiniStringBag -> StringBag - * - * Revision 1.12 2005/04/27 10:00:42 tsuruoka - * remove tmpfb - * - * Revision 1.11 2005/04/26 14:25:53 tsuruoka - * add MiniStringBag, USE_HASH_MAP - * - * Revision 1.10 2004/10/04 05:50:25 tsuruoka - * add Clear() - * - * Revision 1.9 2004/08/09 12:27:21 tsuruoka - * change messages - * - * Revision 1.8 2004/08/04 13:55:19 tsuruoka - * modify _sample2feature - * - * Revision 1.7 2004/07/29 05:51:13 tsuruoka - * remove modeldata.h - * - * Revision 1.6 2004/07/28 13:42:58 tsuruoka - * add AGIS - * - * Revision 1.5 2004/07/28 05:54:14 tsuruoka - * get_class_name() -> get_class_label() - * ME_Feature: bugfix - * - * Revision 1.4 2004/07/27 16:58:47 tsuruoka - * modify the interface of classify() - * - * Revision 1.3 2004/07/26 17:23:46 tsuruoka - * _sample2feature: list -> vector - * - * Revision 1.2 2004/07/26 15:49:23 tsuruoka - * modify ME_Feature - * - * Revision 1.1 2004/07/26 13:10:55 tsuruoka - * add files - * - * Revision 1.18 2004/07/22 08:34:45 tsuruoka - * modify _sample2feature[] - * - * Revision 1.17 2004/07/21 16:33:01 tsuruoka - * remove some comments - * - */ diff --git a/utils/synutils/maxent-3.0/owlqn.cpp b/utils/synutils/maxent-3.0/owlqn.cpp deleted file mode 100644 index c3a0f0da..00000000 --- a/utils/synutils/maxent-3.0/owlqn.cpp +++ /dev/null @@ -1,127 +0,0 @@ -#include <vector> -#include <iostream> -#include <cmath> -#include <stdio.h> -#include "mathvec.h" -#include "lbfgs.h" -#include "maxent.h" - -using namespace std; - -const static int M = LBFGS_M; -const static double LINE_SEARCH_ALPHA = 0.1; -const static double LINE_SEARCH_BETA = 0.5; - -// stopping criteria -int OWLQN_MAX_ITER = 300; -const static double MIN_GRAD_NORM = 0.0001; - -Vec approximate_Hg(const int iter, const Vec& grad, const Vec s[], - const Vec y[], const double z[]); - -inline int sign(double x) { - if (x > 0) return 1; - if (x < 0) return -1; - return 0; -}; - -static Vec pseudo_gradient(const Vec& x, const Vec& grad0, const double C) { - Vec grad = grad0; - for (size_t i = 0; i < x.Size(); i++) { - if (x[i] != 0) { - grad[i] += C * sign(x[i]); - continue; - } - const double gm = grad0[i] - C; - if (gm > 0) { - grad[i] = gm; - continue; - } - const double gp = grad0[i] + C; - if (gp < 0) { - grad[i] = gp; - continue; - } - grad[i] = 0; - } - - return grad; -} - -double ME_Model::regularized_func_grad(const double C, const Vec& x, - Vec& grad) { - double f = FunctionGradient(x.STLVec(), grad.STLVec()); - for (size_t i = 0; i < x.Size(); i++) { - f += C * fabs(x[i]); - } - - return f; -} - -double ME_Model::constrained_line_search(double C, const Vec& x0, - const Vec& grad0, const double f0, - const Vec& dx, Vec& x, Vec& grad1) { - // compute the orthant to explore - Vec orthant = x0; - for (size_t i = 0; i < orthant.Size(); i++) { - if (orthant[i] == 0) orthant[i] = -grad0[i]; - } - - double t = 1.0 / LINE_SEARCH_BETA; - - double f; - do { - t *= LINE_SEARCH_BETA; - x = x0 + t * dx; - x.Project(orthant); - // for (size_t i = 0; i < x.Size(); i++) { - // if (x0[i] != 0 && sign(x[i]) != sign(x0[i])) x[i] = 0; - // } - - f = regularized_func_grad(C, x, grad1); - // cout << "*"; - } while (f > f0 + LINE_SEARCH_ALPHA * dot_product(x - x0, grad0)); - - return f; -} - -vector<double> ME_Model::perform_OWLQN(const vector<double>& x0, - const double C) { - const size_t dim = x0.size(); - Vec x = x0; - - Vec grad(dim), dx(dim); - double f = regularized_func_grad(C, x, grad); - - Vec s[M], y[M]; - double z[M]; // rho - - for (int iter = 0; iter < OWLQN_MAX_ITER; iter++) { - Vec pg = pseudo_gradient(x, grad, C); - - fprintf(stderr, "%3d obj(err) = %f (%6.4f)", iter + 1, -f, _train_error); - if (_nheldout > 0) { - const double heldout_logl = heldout_likelihood(); - fprintf(stderr, " heldout_logl(err) = %f (%6.4f)", heldout_logl, - _heldout_error); - } - fprintf(stderr, "\n"); - - if (sqrt(dot_product(pg, pg)) < MIN_GRAD_NORM) break; - - dx = -1 * approximate_Hg(iter, pg, s, y, z); - if (dot_product(dx, pg) >= 0) dx.Project(-1 * pg); - - Vec x1(dim), grad1(dim); - f = constrained_line_search(C, x, pg, f, dx, x1, grad1); - - s[iter % M] = x1 - x; - y[iter % M] = grad1 - grad; - z[iter % M] = 1.0 / dot_product(y[iter % M], s[iter % M]); - - x = x1; - grad = grad1; - } - - return x.STLVec(); -} diff --git a/utils/synutils/maxent-3.0/sgd.cpp b/utils/synutils/maxent-3.0/sgd.cpp deleted file mode 100644 index 8613edca..00000000 --- a/utils/synutils/maxent-3.0/sgd.cpp +++ /dev/null @@ -1,193 +0,0 @@ -#include "maxent.h" -#include <cmath> -#include <stdio.h> - -using namespace std; - -// const double SGD_ETA0 = 1; -// const double SGD_ITER = 30; -// const double SGD_ALPHA = 0.85; - -//#define FOLOS_NAIVE -//#define FOLOS_LAZY -#define SGD_CP - -inline void apply_l1_penalty(const int i, const double u, vector<double>& _vl, - vector<double>& q) { - double& w = _vl[i]; - const double z = w; - double& qi = q[i]; - if (w > 0) { - w = max(0.0, w - (u + qi)); - } else if (w < 0) { - w = min(0.0, w + (u - qi)); - } - qi += w - z; -} - -static double l1norm(const vector<double>& v) { - double sum = 0; - for (size_t i = 0; i < v.size(); i++) sum += abs(v[i]); - return sum; -} - -inline void update_folos_lazy(const int iter_sample, const int k, - vector<double>& _vl, - const vector<double>& sum_eta, - vector<int>& last_updated) { - const double penalty = sum_eta[iter_sample] - sum_eta[last_updated[k]]; - double& x = _vl[k]; - if (x > 0) - x = max(0.0, x - penalty); - else - x = min(0.0, x + penalty); - last_updated[k] = iter_sample; -} - -int ME_Model::perform_SGD() { - if (_l2reg > 0) { - cerr << "error: L2 regularization is currently not supported in SGD mode." - << endl; - exit(1); - } - - cerr << "performing SGD" << endl; - - const double l1param = _l1reg; - - const int d = _fb.Size(); - - vector<int> ri(_vs.size()); - for (size_t i = 0; i < ri.size(); i++) ri[i] = i; - - vector<double> grad(d); - int iter_sample = 0; - const double eta0 = SGD_ETA0; - - // cerr << "l1param = " << l1param << endl; - cerr << "eta0 = " << eta0 << " alpha = " << SGD_ALPHA << endl; - - double u = 0; - vector<double> q(d, 0); - vector<int> last_updated(d, 0); - vector<double> sum_eta; - sum_eta.push_back(0); - - for (int iter = 0; iter < SGD_ITER; iter++) { - - random_shuffle(ri.begin(), ri.end()); - - double logl = 0; - int ncorrect = 0, ntotal = 0; - for (size_t i = 0; i < _vs.size(); i++, ntotal++, iter_sample++) { - const Sample& s = _vs[ri[i]]; - -#ifdef FOLOS_LAZY - for (vector<int>::const_iterator j = s.positive_features.begin(); - j != s.positive_features.end(); j++) { - for (vector<int>::const_iterator k = _feature2mef[*j].begin(); - k != _feature2mef[*j].end(); k++) { - update_folos_lazy(iter_sample, *k, _vl, sum_eta, last_updated); - } - } -#endif - - vector<double> membp(_num_classes); - const int max_label = conditional_probability(s, membp); - - const double eta = - eta0 * pow(SGD_ALPHA, - (double)iter_sample / _vs.size()); // exponential decay - // const double eta = eta0 / (1.0 + (double)iter_sample / - // _vs.size()); - - // if (iter_sample % _vs.size() == 0) cerr << "eta = " << eta << - // endl; - u += eta * l1param; - - sum_eta.push_back(sum_eta.back() + eta * l1param); - - logl += log(membp[s.label]); - if (max_label == s.label) ncorrect++; - - // binary features - for (vector<int>::const_iterator j = s.positive_features.begin(); - j != s.positive_features.end(); j++) { - for (vector<int>::const_iterator k = _feature2mef[*j].begin(); - k != _feature2mef[*j].end(); k++) { - const double me = membp[_fb.Feature(*k).label()]; - const double ee = (_fb.Feature(*k).label() == s.label ? 1.0 : 0); - const double grad = (me - ee); - _vl[*k] -= eta * grad; -#ifdef SGD_CP - apply_l1_penalty(*k, u, _vl, q); -#endif - } - } - // real-valued features - for (vector<pair<int, double> >::const_iterator j = s.rvfeatures.begin(); - j != s.rvfeatures.end(); j++) { - for (vector<int>::const_iterator k = _feature2mef[j->first].begin(); - k != _feature2mef[j->first].end(); k++) { - const double me = membp[_fb.Feature(*k).label()]; - const double ee = (_fb.Feature(*k).label() == s.label ? 1.0 : 0); - const double grad = (me - ee) * j->second; - _vl[*k] -= eta * grad; -#ifdef SGD_CP - apply_l1_penalty(*k, u, _vl, q); -#endif - } - } - -#ifdef FOLOS_NAIVE - for (size_t j = 0; j < d; j++) { - double& x = _vl[j]; - if (x > 0) - x = max(0.0, x - eta * l1param); - else - x = min(0.0, x + eta * l1param); - } -#endif - } - logl /= _vs.size(); -// fprintf(stderr, "%4d logl = %8.3f acc = %6.4f ", iter, logl, -// (double)ncorrect / ntotal); - -#ifdef FOLOS_LAZY - if (l1param > 0) { - for (size_t j = 0; j < d; j++) - update_folos_lazy(iter_sample, j, _vl, sum_eta, last_updated); - } -#endif - - double f = logl; - if (l1param > 0) { - const double l1 = - l1norm(_vl); // this is not accurate when lazy update is used - // cerr << "f0 = " << update_model_expectation() - l1param * l1 << " - // "; - f -= l1param * l1; - int nonzero = 0; - for (int j = 0; j < d; j++) - if (_vl[j] != 0) nonzero++; - // cerr << " f = " << f << " l1 = " << l1 << " nonzero_features = " - // << nonzero << endl; - } - // fprintf(stderr, "%4d obj = %7.3f acc = %6.4f", iter+1, f, - // (double)ncorrect/ntotal); - // fprintf(stderr, "%4d obj = %f", iter+1, f); - fprintf(stderr, "%3d obj(err) = %f (%6.4f)", iter + 1, f, - 1 - (double)ncorrect / ntotal); - - if (_nheldout > 0) { - double heldout_logl = heldout_likelihood(); - // fprintf(stderr, " heldout_logl = %f acc = %6.4f\n", - // heldout_logl, 1 - _heldout_error); - fprintf(stderr, " heldout_logl(err) = %f (%6.4f)", heldout_logl, - _heldout_error); - } - fprintf(stderr, "\n"); - } - - return 0; -} |