diff options
Diffstat (limited to 'training')
| -rw-r--r-- | training/dtrain/dtrain.cc | 32 | ||||
| -rw-r--r-- | training/dtrain/dtrain.h | 2 | ||||
| -rw-r--r-- | training/dtrain/pairsampling.h | 1 | ||||
| -rw-r--r-- | training/dtrain/score.cc | 18 | ||||
| -rw-r--r-- | training/dtrain/score.h | 18 | 
5 files changed, 42 insertions, 29 deletions
| diff --git a/training/dtrain/dtrain.cc b/training/dtrain/dtrain.cc index 0a27a068..b01cf421 100644 --- a/training/dtrain/dtrain.cc +++ b/training/dtrain/dtrain.cc @@ -44,7 +44,7 @@ dtrain_init(int argc, char** argv, po::variables_map* cfg)      ("pclr",              po::value<string>()->default_value("no"),         "use a (simple|adagrad) per-coordinate learning rate")      ("batch",             po::value<bool>()->zero_tokens(),                                               "do batch optimization")      ("repeat",            po::value<unsigned>()->default_value(1),          "repeat optimization over kbest list this number of times") -    //("test-k-best",       po::value<bool>()->zero_tokens(),                       "check if optimization works (use repeat >= 2)") +    ("check",             po::value<bool>()->zero_tokens(),                                  "produce list of loss differentials")      ("noup",              po::value<bool>()->zero_tokens(),                                               "do not update weights");    po::options_description cl("Command Line Options");    cl.add_options() @@ -130,8 +130,8 @@ main(int argc, char** argv)    const score_t approx_bleu_d = cfg["approx_bleu_d"].as<score_t>();    const unsigned max_pairs = cfg["max_pairs"].as<unsigned>();    int repeat = cfg["repeat"].as<unsigned>(); -  //bool test_k_best = false; -  //if (cfg.count("test-k-best")) test_k_best = true; +  bool check = false; +  if (cfg.count("check")) check = true;    weight_t loss_margin = cfg["loss_margin"].as<weight_t>();    bool batch = false;    if (cfg.count("batch")) batch = true; @@ -412,27 +412,38 @@ main(int argc, char** argv)        int cur_npairs = pairs.size();        npairs += cur_npairs; -      score_t kbest_loss_first, kbest_loss_last = 0.0; +      score_t kbest_loss_first = 0.0, kbest_loss_last = 0.0; + +      if (check) repeat = 2; +      vector<float> losses; // for check        for (vector<pair<ScoredHyp,ScoredHyp> >::iterator it = pairs.begin();             it != pairs.end(); it++) {          score_t model_diff = it->first.model - it->second.model; -        kbest_loss_first += max(0.0, -1.0 * model_diff); +        score_t loss = max(0.0, -1.0 * model_diff); +        losses.push_back(loss); +        kbest_loss_first += loss;        } +      score_t kbest_loss = 0.0;        for (int ki=0; ki < repeat; ki++) { -      score_t kbest_loss = 0.0; // test-k-best        SparseVector<weight_t> lambdas_copy; // for l1 regularization        SparseVector<weight_t> sum_up; // for pclr        if (l1naive||l1clip||l1cumul) lambdas_copy = lambdas; +      unsigned pair_idx = 0; // for check        for (vector<pair<ScoredHyp,ScoredHyp> >::iterator it = pairs.begin();             it != pairs.end(); it++) {          score_t model_diff = it->first.model - it->second.model; +        score_t loss = max(0.0, -1.0 * model_diff); + +        if (check && ki == 1) cout << losses[pair_idx] - loss << endl; +        pair_idx++; +          if (repeat > 1) {            model_diff = lambdas.dot(it->first.f) - lambdas.dot(it->second.f); -          kbest_loss += max(0.0, -1.0 * model_diff); +          kbest_loss += loss;          }          bool rank_error = false;          score_t margin; @@ -449,7 +460,7 @@ main(int argc, char** argv)          if (rank_error || margin < loss_margin) {            SparseVector<weight_t> diff_vec = it->first.f - it->second.f;            if (batch) { -            batch_loss += max(0., -1.0*model_diff); +            batch_loss += max(0., -1.0 * model_diff);              batch_updates += diff_vec;              continue;            } @@ -529,9 +540,8 @@ main(int argc, char** argv)        if (ki==repeat-1) { // done          kbest_loss_last = kbest_loss;          if (repeat > 1) { -          score_t best_score = -1.;            score_t best_model = -std::numeric_limits<score_t>::max(); -          unsigned best_idx; +          unsigned best_idx = 0;            for (unsigned i=0; i < samples->size(); i++) {              score_t s = lambdas.dot((*samples)[i].f);              if (s > best_model) { @@ -634,6 +644,8 @@ main(int argc, char** argv)      Weights::WriteToFile(w_fn, decoder_weights, true);    } +  if (check) cout << "---" << endl; +    } // outer loop    if (average) w_average /= (weight_t)T; diff --git a/training/dtrain/dtrain.h b/training/dtrain/dtrain.h index ccb5ad4d..eb23b813 100644 --- a/training/dtrain/dtrain.h +++ b/training/dtrain/dtrain.h @@ -64,7 +64,7 @@ struct LocalScorer    vector<score_t> w_;    virtual score_t -  Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned rank, const unsigned src_len)=0; +  Score(const vector<WordID>& hyp, const vector<WordID>& ref, const unsigned rank, const unsigned src_len)=0;    virtual void Reset() {} // only for ApproxBleuScorer, LinearBleuScorer diff --git a/training/dtrain/pairsampling.h b/training/dtrain/pairsampling.h index 3f67e209..1a3c498c 100644 --- a/training/dtrain/pairsampling.h +++ b/training/dtrain/pairsampling.h @@ -112,6 +112,7 @@ _PRO_cmp_pair_by_diff_d(pair<ScoredHyp,ScoredHyp> a, pair<ScoredHyp,ScoredHyp> b  inline void  PROsampling(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, unsigned max, bool _unused=false, float _also_unused=0)  { +  sort(s->begin(), s->end(), cmp_hyp_by_score_d);    unsigned max_count = 5000, count = 0, sz = s->size();    bool b = false;    for (unsigned i = 0; i < sz-1; i++) { diff --git a/training/dtrain/score.cc b/training/dtrain/score.cc index 96d6e10a..127f34d2 100644 --- a/training/dtrain/score.cc +++ b/training/dtrain/score.cc @@ -32,7 +32,7 @@ BleuScorer::Bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref  }  score_t -BleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref, +BleuScorer::Score(const vector<WordID>& hyp, const vector<WordID>& ref,                    const unsigned /*rank*/, const unsigned /*src_len*/)  {    unsigned hyp_len = hyp.size(), ref_len = ref.size(); @@ -52,7 +52,7 @@ BleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,   * NOTE: 0 iff no 1gram match ('grounded')   */  score_t -StupidBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref, +StupidBleuScorer::Score(const vector<WordID>& hyp, const vector<WordID>& ref,                          const unsigned /*rank*/, const unsigned /*src_len*/)  {    unsigned hyp_len = hyp.size(), ref_len = ref.size(); @@ -81,7 +81,7 @@ StupidBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,   * (Nakov et al. '12)   */  score_t -FixedStupidBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref, +FixedStupidBleuScorer::Score(const vector<WordID>& hyp, const vector<WordID>& ref,                          const unsigned /*rank*/, const unsigned /*src_len*/)  {    unsigned hyp_len = hyp.size(), ref_len = ref.size(); @@ -112,7 +112,7 @@ FixedStupidBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,   * NOTE: max is 0.9375 (with N=4)   */  score_t -SmoothBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref, +SmoothBleuScorer::Score(const vector<WordID>& hyp, const vector<WordID>& ref,                          const unsigned /*rank*/, const unsigned /*src_len*/)  {    unsigned hyp_len = hyp.size(), ref_len = ref.size(); @@ -143,7 +143,7 @@ SmoothBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,   * sum up Ngram precisions   */  score_t -SumBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref, +SumBleuScorer::Score(const vector<WordID>& hyp, const vector<WordID>& ref,                          const unsigned /*rank*/, const unsigned /*src_len*/)  {    unsigned hyp_len = hyp.size(), ref_len = ref.size(); @@ -167,7 +167,7 @@ SumBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,   * sum up exp(Ngram precisions)   */  score_t -SumExpBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref, +SumExpBleuScorer::Score(const vector<WordID>& hyp, const vector<WordID>& ref,                          const unsigned /*rank*/, const unsigned /*src_len*/)  {    unsigned hyp_len = hyp.size(), ref_len = ref.size(); @@ -191,7 +191,7 @@ SumExpBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,   * sum up exp(weight * log(Ngram precisions))   */  score_t -SumWhateverBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref, +SumWhateverBleuScorer::Score(const vector<WordID>& hyp, const vector<WordID>& ref,                          const unsigned /*rank*/, const unsigned /*src_len*/)  {    unsigned hyp_len = hyp.size(), ref_len = ref.size(); @@ -224,7 +224,7 @@ SumWhateverBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,   *       No scaling by src len.   */  score_t -ApproxBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref, +ApproxBleuScorer::Score(const vector<WordID>& hyp, const vector<WordID>& ref,                          const unsigned rank, const unsigned src_len)  {    unsigned hyp_len = hyp.size(), ref_len = ref.size(); @@ -255,7 +255,7 @@ ApproxBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,   *   */  score_t -LinearBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref, +LinearBleuScorer::Score(const vector<WordID>& hyp, const vector<WordID>& ref,                          const unsigned rank, const unsigned /*src_len*/)  {    unsigned hyp_len = hyp.size(), ref_len = ref.size(); diff --git a/training/dtrain/score.h b/training/dtrain/score.h index 53e970ba..1cdd3fa9 100644 --- a/training/dtrain/score.h +++ b/training/dtrain/score.h @@ -138,43 +138,43 @@ make_ngram_counts(const vector<WordID>& hyp, const vector<WordID>& ref, const un  struct BleuScorer : public LocalScorer  {    score_t Bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len); -  score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); +  score_t Score(const vector<WordID>& hyp, const vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);    void Reset() {}  };  struct StupidBleuScorer : public LocalScorer  { -  score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); +  score_t Score(const vector<WordID>& hyp, const vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);    void Reset() {}  };  struct FixedStupidBleuScorer : public LocalScorer  { -  score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); +  score_t Score(const vector<WordID>& hyp, const vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);    void Reset() {}  };  struct SmoothBleuScorer : public LocalScorer  { -  score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); +  score_t Score(const vector<WordID>& hyp, const vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);    void Reset() {}  };  struct SumBleuScorer : public LocalScorer  { -  score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); +  score_t Score(const vector<WordID>& hyp, const vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);    void Reset() {}  };  struct SumExpBleuScorer : public LocalScorer  { -  score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); +  score_t Score(const vector<WordID>& hyp, const vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);    void Reset() {}  };  struct SumWhateverBleuScorer : public LocalScorer  { -  score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); +  score_t Score(const vector<WordID>& hyp, const vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);    void Reset() {};  }; @@ -194,7 +194,7 @@ struct ApproxBleuScorer : public BleuScorer      glob_hyp_len_ = glob_ref_len_ = glob_src_len_ = 0.;    } -  score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned rank, const unsigned src_len); +  score_t Score(const vector<WordID>& hyp, const vector<WordID>& ref, const unsigned rank, const unsigned src_len);  };  struct LinearBleuScorer : public BleuScorer @@ -207,7 +207,7 @@ struct LinearBleuScorer : public BleuScorer      onebest_counts_.One();    } -  score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned rank, const unsigned /*src_len*/); +  score_t Score(const vector<WordID>& hyp, const vector<WordID>& ref, const unsigned rank, const unsigned /*src_len*/);    inline void Reset() {      onebest_len_ = 1; | 
