diff options
Diffstat (limited to 'training')
-rw-r--r-- | training/Makefile.am | 4 | ||||
-rw-r--r-- | training/candidate_set.cc | 9 | ||||
-rw-r--r-- | training/entropy.cc | 41 | ||||
-rw-r--r-- | training/entropy.h | 22 | ||||
-rw-r--r-- | training/grammar_convert.cc | 27 | ||||
-rw-r--r-- | training/mpi_batch_optimize.cc | 3 | ||||
-rw-r--r-- | training/risk.cc | 45 | ||||
-rw-r--r-- | training/risk.h | 26 |
8 files changed, 171 insertions, 6 deletions
diff --git a/training/Makefile.am b/training/Makefile.am index 19ee8f0d..4cef0d5b 100644 --- a/training/Makefile.am +++ b/training/Makefile.am @@ -26,8 +26,10 @@ TESTS = lbfgs_test optimize_test noinst_LIBRARIES = libtraining.a libtraining_a_SOURCES = \ candidate_set.cc \ + entropy.cc \ optimize.cc \ - online_optimizer.cc + online_optimizer.cc \ + risk.cc mpi_online_optimize_SOURCES = mpi_online_optimize.cc mpi_online_optimize_LDADD = libtraining.a $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz diff --git a/training/candidate_set.cc b/training/candidate_set.cc index 8c086ece..087efec3 100644 --- a/training/candidate_set.cc +++ b/training/candidate_set.cc @@ -4,6 +4,7 @@ #include <boost/functional/hash.hpp> +#include "verbose.h" #include "ns.h" #include "filelib.h" #include "wordid.h" @@ -118,7 +119,7 @@ void CandidateSet::WriteToFile(const string& file) const { } void CandidateSet::ReadFromFile(const string& file) { - cerr << "Reading candidates from " << file << endl; + if(!SILENT) cerr << "Reading candidates from " << file << endl; ReadFile rf(file); istream& in = *rf.stream(); string cand; @@ -133,11 +134,11 @@ void CandidateSet::ReadFromFile(const string& file) { ParseSparseVector(feats, 0, &cs.back().fmap); cs.back().eval_feats = SufficientStats(ss); } - cerr << " read " << cs.size() << " candidates\n"; + if(!SILENT) cerr << " read " << cs.size() << " candidates\n"; } void CandidateSet::Dedup() { - cerr << "Dedup in=" << cs.size(); + if(!SILENT) cerr << "Dedup in=" << cs.size(); tr1::unordered_set<Candidate, CandidateHasher, CandidateCompare> u; while(cs.size() > 0) { u.insert(cs.back()); @@ -148,7 +149,7 @@ void CandidateSet::Dedup() { cs.push_back(*it); it = u.erase(it); } - cerr << " out=" << cs.size() << endl; + if(!SILENT) cerr << " out=" << cs.size() << endl; } void CandidateSet::AddKBestCandidates(const Hypergraph& hg, size_t kbest_size, const SegmentEvaluator* scorer) { diff --git a/training/entropy.cc b/training/entropy.cc new file mode 100644 index 00000000..4fdbe2be --- /dev/null +++ b/training/entropy.cc @@ -0,0 +1,41 @@ +#include "entropy.h" + +#include "prob.h" +#include "candidate_set.h" + +using namespace std; + +namespace training { + +// see Mann and McCallum "Efficient Computation of Entropy Gradient ..." for +// a mostly clear derivation of: +// g = E[ F(x,y) * log p(y|x) ] + H(y | x) * E[ F(x,y) ] +double CandidateSetEntropy::operator()(const vector<double>& params, + SparseVector<double>* g) const { + prob_t z; + vector<double> dps(cands_.size()); + for (unsigned i = 0; i < cands_.size(); ++i) { + dps[i] = cands_[i].fmap.dot(params); + const prob_t u(dps[i], init_lnx()); + z += u; + } + const double log_z = log(z); + + SparseVector<double> exp_feats; + double entropy = 0; + for (unsigned i = 0; i < cands_.size(); ++i) { + const double log_prob = cands_[i].fmap.dot(params) - log_z; + const double prob = exp(log_prob); + const double e_logprob = prob * log_prob; + entropy -= e_logprob; + if (g) { + (*g) += cands_[i].fmap * e_logprob; + exp_feats += cands_[i].fmap * prob; + } + } + if (g) (*g) += exp_feats * entropy; + return entropy; +} + +} + diff --git a/training/entropy.h b/training/entropy.h new file mode 100644 index 00000000..796589ca --- /dev/null +++ b/training/entropy.h @@ -0,0 +1,22 @@ +#ifndef _CSENTROPY_H_ +#define _CSENTROPY_H_ + +#include <vector> +#include "sparse_vector.h" + +namespace training { + class CandidateSet; + + class CandidateSetEntropy { + public: + explicit CandidateSetEntropy(const CandidateSet& cs) : cands_(cs) {} + // compute the entropy (expected log likelihood) of a CandidateSet + // (optional) the gradient of the entropy with respect to params + double operator()(const std::vector<double>& params, + SparseVector<double>* g = NULL) const; + private: + const CandidateSet& cands_; + }; +}; + +#endif diff --git a/training/grammar_convert.cc b/training/grammar_convert.cc index bf8abb26..607a7cb9 100644 --- a/training/grammar_convert.cc +++ b/training/grammar_convert.cc @@ -9,6 +9,7 @@ #include <boost/lexical_cast.hpp> #include <boost/program_options.hpp> +#include "inside_outside.h" #include "tdict.h" #include "filelib.h" #include "hg.h" @@ -69,6 +70,32 @@ void FilterAndCheckCorrectness(int goal, Hypergraph* hg) { if (hg->nodes_.size() != old_size) { cerr << "Warning! During sorting " << (old_size - hg->nodes_.size()) << " disappeared!\n"; } + vector<double> inside; // inside score at each node + double p = Inside<double, TransitionCountWeightFunction>(*hg, &inside); + if (!p) { + cerr << "Warning! Grammar defines the empty language!\n"; + hg->clear(); + return; + } + vector<bool> prune(hg->edges_.size(), false); + int bad_edges = 0; + for (unsigned i = 0; i < hg->edges_.size(); ++i) { + Hypergraph::Edge& edge = hg->edges_[i]; + bool bad = false; + for (unsigned j = 0; j < edge.tail_nodes_.size(); ++j) { + if (!inside[edge.tail_nodes_[j]]) { + bad = true; + ++bad_edges; + } + } + prune[i] = bad; + } + cerr << "Removing " << bad_edges << " bad edges from the grammar.\n"; + for (unsigned i = 0; i < hg->edges_.size(); ++i) { + if (prune[i]) + cerr << " " << hg->edges_[i].rule_->AsString() << endl; + } + hg->PruneEdges(prune); } void CreateEdge(const TRulePtr& r, const Hypergraph::TailNodeVector& tail, Hypergraph::Node* head_node, Hypergraph* hg) { diff --git a/training/mpi_batch_optimize.cc b/training/mpi_batch_optimize.cc index 0db062a7..6432f4a2 100644 --- a/training/mpi_batch_optimize.cc +++ b/training/mpi_batch_optimize.cc @@ -310,7 +310,8 @@ int main(int argc, char** argv) { reduce(world, cllh_observer.acc_obj, test_objective, std::plus<double>(), 0); reduce(world, cllh_observer.trg_words, test_total_words, std::plus<unsigned>(), 0); #else - test_objective = observer.acc_obj; + test_objective = cllh_observer.acc_obj; + test_total_words = cllh_observer.trg_words; #endif if (rank == 0) { // run optimizer only on rank=0 node diff --git a/training/risk.cc b/training/risk.cc new file mode 100644 index 00000000..d5a12cfd --- /dev/null +++ b/training/risk.cc @@ -0,0 +1,45 @@ +#include "risk.h" + +#include "prob.h" +#include "candidate_set.h" +#include "ns.h" + +using namespace std; + +namespace training { + +// g = \sum_e p(e|f) * loss(e) * (phi(e,f) - E[phi(e,f)]) +double CandidateSetRisk::operator()(const vector<double>& params, + SparseVector<double>* g) const { + prob_t z; + for (unsigned i = 0; i < cands_.size(); ++i) { + const prob_t u(cands_[i].fmap.dot(params), init_lnx()); + z += u; + } + const double log_z = log(z); + + SparseVector<double> exp_feats; + if (g) { + for (unsigned i = 0; i < cands_.size(); ++i) { + const double log_prob = cands_[i].fmap.dot(params) - log_z; + const double prob = exp(log_prob); + exp_feats += cands_[i].fmap * prob; + } + } + + double risk = 0; + for (unsigned i = 0; i < cands_.size(); ++i) { + const double log_prob = cands_[i].fmap.dot(params) - log_z; + const double prob = exp(log_prob); + const double cost = metric_.IsErrorMetric() ? metric_.ComputeScore(cands_[i].eval_feats) + : 1.0 - metric_.ComputeScore(cands_[i].eval_feats); + const double r = prob * cost; + risk += r; + if (g) (*g) += (cands_[i].fmap - exp_feats) * r; + } + return risk; +} + +} + + diff --git a/training/risk.h b/training/risk.h new file mode 100644 index 00000000..2e8db0fb --- /dev/null +++ b/training/risk.h @@ -0,0 +1,26 @@ +#ifndef _RISK_H_ +#define _RISK_H_ + +#include <vector> +#include "sparse_vector.h" +class EvaluationMetric; + +namespace training { + class CandidateSet; + + class CandidateSetRisk { + public: + explicit CandidateSetRisk(const CandidateSet& cs, const EvaluationMetric& metric) : + cands_(cs), + metric_(metric) {} + // compute the risk (expected loss) of a CandidateSet + // (optional) the gradient of the risk with respect to params + double operator()(const std::vector<double>& params, + SparseVector<double>* g = NULL) const; + private: + const CandidateSet& cands_; + const EvaluationMetric& metric_; + }; +}; + +#endif |