summaryrefslogtreecommitdiff
path: root/training
diff options
context:
space:
mode:
Diffstat (limited to 'training')
-rw-r--r--training/Makefile.am4
-rw-r--r--training/mpi_online_optimize.cc164
-rw-r--r--training/online_optimizer.h50
3 files changed, 115 insertions, 103 deletions
diff --git a/training/Makefile.am b/training/Makefile.am
index ea637d9e..2679adea 100644
--- a/training/Makefile.am
+++ b/training/Makefile.am
@@ -22,10 +22,10 @@ bin_PROGRAMS += mpi_batch_optimize \
mpi_online_optimize
mpi_batch_optimize_SOURCES = mpi_batch_optimize.cc optimize.cc
-mpi_batch_optimize_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a -lz -lmpi++ -lmpi
+mpi_batch_optimize_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a -lz
mpi_online_optimize_SOURCES = mpi_online_optimize.cc online_optimizer.cc
-mpi_online_optimize_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a -lz -lmpi++ -lmpi
+mpi_online_optimize_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a -lz
endif
online_train_SOURCES = online_train.cc online_optimizer.cc
diff --git a/training/mpi_online_optimize.cc b/training/mpi_online_optimize.cc
index 62821aa3..6f5988a4 100644
--- a/training/mpi_online_optimize.cc
+++ b/training/mpi_online_optimize.cc
@@ -6,6 +6,7 @@
#include <cmath>
#include <mpi.h>
+#include <boost/mpi.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
@@ -66,10 +67,11 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
("minibatch_size_per_proc,s", po::value<unsigned>()->default_value(5), "Number of training instances evaluated per processor in each minibatch")
("freeze_feature_set,Z", "The feature set specified in the initial weights file is frozen throughout the duration of training")
("optimization_method,m", po::value<string>()->default_value("sgd"), "Optimization method (sgd)")
+ ("fully_random,r", "Fully random draws from the training corpus")
+ ("random_seed,S", po::value<uint32_t>(), "Random seed (if not specified, /dev/random will be used)")
("eta_0,e", po::value<double>()->default_value(0.2), "Initial learning rate for SGD (eta_0)")
("L1,1","Use L1 regularization")
- ("gaussian_prior,g","Use a Gaussian prior on the weights")
- ("sigma_squared", po::value<double>()->default_value(1.0), "Sigma squared term for spherical Gaussian prior");
+ ("regularization_strength,C", po::value<double>()->default_value(1.0), "Regularization strength (C)");
po::options_description clo("Command line options");
clo.add_options()
("config", po::value<string>(), "Configuration file")
@@ -165,7 +167,7 @@ struct TrainingObserver : public DecoderObserver {
}
assert(!isnan(log_ref_z));
ref_exp -= cur_model_exp;
- acc_grad -= ref_exp;
+ acc_grad += ref_exp;
acc_obj += (cur_obj - log_ref_z);
}
@@ -176,6 +178,12 @@ struct TrainingObserver : public DecoderObserver {
}
}
+ void GetGradient(SparseVector<double>* g) const {
+ g->clear();
+ for (SparseVector<prob_t>::const_iterator it = acc_grad.begin(); it != acc_grad.end(); ++it)
+ g->set_value(it->first, it->second);
+ }
+
int total_complete;
SparseVector<prob_t> cur_model_exp;
SparseVector<prob_t> acc_grad;
@@ -193,10 +201,20 @@ inline void Shuffle(vector<T>* c, MT19937* rng) {
}
}
+namespace mpi = boost::mpi;
+
+namespace boost { namespace mpi {
+ template<>
+ struct is_commutative<std::plus<SparseVector<double> >, SparseVector<double> >
+ : mpl::true_ { };
+} } // end namespace boost::mpi
+
+
int main(int argc, char** argv) {
- MPI::Init(argc, argv);
- const int size = MPI::COMM_WORLD.Get_size();
- const int rank = MPI::COMM_WORLD.Get_rank();
+ mpi::environment env(argc, argv);
+ mpi::communicator world;
+ const int size = world.size();
+ const int rank = world.rank();
SetSilent(true); // turn off verbose decoder output
cerr << "MPI: I am " << rank << '/' << size << endl;
register_feature_functions();
@@ -219,7 +237,7 @@ int main(int argc, char** argv) {
Decoder decoder(ini_rf.stream());
if (decoder.GetConf()["input"].as<string>() != "-") {
cerr << "cdec.ini must not set an input file\n";
- MPI::COMM_WORLD.Abort(1);
+ abort();
}
vector<string> corpus;
@@ -228,105 +246,87 @@ int main(int argc, char** argv) {
std::tr1::shared_ptr<OnlineOptimizer> o;
std::tr1::shared_ptr<LearningRateSchedule> lr;
- vector<int> order;
+ vector<int> order(corpus.size());
+
+ const bool fully_random = conf.count("fully_random");
+ const unsigned size_per_proc = conf["minibatch_size_per_proc"].as<unsigned>();
+ const unsigned batch_size = size_per_proc * size;
if (rank == 0) {
+ cerr << "Corpus: " << corpus.size() << " batch size: " << batch_size << endl;
+ if (batch_size > corpus.size()) {
+ cerr << " Reduce minibatch_size_per_proc!";
+ abort();
+ }
+
// TODO config
- lr.reset(new ExponentialDecayLearningRate(corpus.size(), conf["eta_0"].as<double>()));
+ lr.reset(new ExponentialDecayLearningRate(batch_size, conf["eta_0"].as<double>()));
const string omethod = conf["optimization_method"].as<string>();
if (omethod == "sgd") {
- const double C = 1.0;
+ const double C = conf["regularization_strength"].as<double>();
o.reset(new CumulativeL1OnlineOptimizer(lr, corpus.size(), C));
} else {
assert(!"fail");
}
- // randomize corpus
- rng = new MT19937;
- order.resize(corpus.size());
for (unsigned i = 0; i < order.size(); ++i) order[i]=i;
- Shuffle(&order, rng);
+ // randomize corpus
+ if (conf.count("random_seed"))
+ rng = new MT19937(conf["random_seed"].as<uint32_t>());
+ else
+ rng = new MT19937;
}
+ SparseVector<double> x;
+ int miter = corpus.size(); // hack to cause initial broadcast of order info
+ TrainingObserver observer;
double objective = 0;
- vector<double> lambdas;
- weights.InitVector(&lambdas);
bool converged = false;
- const unsigned size_per_proc = conf["minibatch_size_per_proc"].as<unsigned>();
- for (int i = 0; i < size_per_proc; ++i)
- cerr << "i=" << i << ": " << order[i] << endl;
- abort();
- TrainingObserver observer;
+
+ int iter = -1;
+ vector<double> lambdas;
while (!converged) {
+ weights.InitFromVector(x);
+ weights.InitVector(&lambdas);
+ ++miter; ++iter;
observer.Reset();
- if (rank == 0) {
- cerr << "Starting decoding... (~" << corpus.size() << " sentences / proc)\n";
- }
decoder.SetWeights(lambdas);
-#if 0
- for (int i = 0; i < corpus.size(); ++i)
- decoder.Decode(corpus[i], &observer);
-
- fill(gradient.begin(), gradient.end(), 0);
- fill(rcv_grad.begin(), rcv_grad.end(), 0);
- observer.SetLocalGradientAndObjective(&gradient, &objective);
-
- double to = 0;
- MPI::COMM_WORLD.Reduce(const_cast<double*>(&gradient.data()[0]), &rcv_grad[0], num_feats, MPI::DOUBLE, MPI::SUM, 0);
- MPI::COMM_WORLD.Reduce(&objective, &to, 1, MPI::DOUBLE, MPI::SUM, 0);
- swap(gradient, rcv_grad);
- objective = to;
-
- if (rank == 0) { // run optimizer only on rank=0 node
- if (gaussian_prior) {
- const double sigsq = conf["sigma_squared"].as<double>();
- double norm = 0;
- for (int k = 1; k < lambdas.size(); ++k) {
- const double& lambda_k = lambdas[k];
- if (lambda_k) {
- const double param = (lambda_k - means[k]);
- norm += param * param;
- gradient[k] += param / sigsq;
- }
- }
- const double reg = norm / (2.0 * sigsq);
- cerr << "REGULARIZATION TERM: " << reg << endl;
- objective += reg;
- }
- cerr << "EVALUATION #" << o->EvaluationCount() << " OBJECTIVE: " << objective << endl;
- double gnorm = 0;
- for (int i = 0; i < gradient.size(); ++i)
- gnorm += gradient[i] * gradient[i];
- cerr << " GNORM=" << sqrt(gnorm) << endl;
- vector<double> old = lambdas;
- int c = 0;
- while (old == lambdas) {
- ++c;
- if (c > 1) { cerr << "Same lambdas, repeating optimization\n"; }
- o->Optimize(objective, gradient, &lambdas);
- assert(c < 5);
- }
- old.clear();
+ if (rank == 0) {
SanityCheck(lambdas);
ShowLargestFeatures(lambdas);
- weights.InitFromVector(lambdas);
-
- converged = o->HasConverged();
- if (converged) { cerr << "OPTIMIZER REPORTS CONVERGENCE!\n"; }
-
string fname = "weights.cur.gz";
if (converged) { fname = "weights.final.gz"; }
ostringstream vv;
- vv << "Objective = " << objective << " (eval count=" << o->EvaluationCount() << ")";
+ vv << "Objective = " << objective; // << " (eval count=" << o->EvaluationCount() << ")";
const string svv = vv.str();
weights.WriteToFile(fname, true, &svv);
- } // rank == 0
- int cint = converged;
- MPI::COMM_WORLD.Bcast(const_cast<double*>(&lambdas.data()[0]), num_feats, MPI::DOUBLE, 0);
- MPI::COMM_WORLD.Bcast(&cint, 1, MPI::INT, 0);
- MPI::COMM_WORLD.Barrier();
- converged = cint;
-#endif
+ }
+
+ if (fully_random || size * size_per_proc * miter > corpus.size()) {
+ if (rank == 0)
+ Shuffle(&order, rng);
+ miter = 0;
+ broadcast(world, order, 0);
+ }
+ if (rank == 0)
+ cerr << "Starting decoding. minibatch=" << size_per_proc << " sentences/proc x " << size << " procs. num_feats=" << x.size() << " training data proc. = " << (iter * batch_size / static_cast<double>(corpus.size())) << " eta=" << lr->eta(iter) << endl;
+
+ const int beg = size * miter * size_per_proc + rank * size_per_proc;
+ const int end = beg + size_per_proc;
+ for (int i = beg; i < end; ++i) {
+ int ex_num = order[i % order.size()];
+ if (rank ==0 && size < 3) cerr << rank << ": ex_num=" << ex_num << endl;
+ decoder.SetId(ex_num);
+ decoder.Decode(corpus[ex_num], &observer);
+ }
+ SparseVector<double> local_grad, g;
+ observer.GetGradient(&local_grad);
+ reduce(world, local_grad, g, std::plus<SparseVector<double> >(), 0);
+ if (rank == 0) {
+ g /= batch_size;
+ o->UpdateWeights(g, FD::NumFeats(), &x);
+ }
+ broadcast(world, x, 0);
+ world.barrier();
}
- MPI::Finalize();
return 0;
}
diff --git a/training/online_optimizer.h b/training/online_optimizer.h
index d2718f93..963c0380 100644
--- a/training/online_optimizer.h
+++ b/training/online_optimizer.h
@@ -8,16 +8,22 @@
struct LearningRateSchedule {
virtual ~LearningRateSchedule();
- // returns the learning rate for iteration k
+ // returns the learning rate for the kth iteration
virtual double eta(int k) const = 0;
};
+// TODO in the Tsoruoaka et al. (ACL 2009) paper, they use N
+// to mean the batch size in most places, but it doesn't completely
+// make sense to me in the learning rate schedules-- this needs
+// to be worked out to make sure they didn't mean corpus size
+// in some places and batch size in others (since in the paper they
+// only ever work with batch sizes of 1)
struct StandardLearningRate : public LearningRateSchedule {
StandardLearningRate(
- size_t training_instances,
+ size_t batch_size, // batch size, not corpus size!
double eta_0 = 0.2) :
eta_0_(eta_0),
- N_(static_cast<double>(training_instances)) {}
+ N_(static_cast<double>(batch_size)) {}
virtual double eta(int k) const;
@@ -28,11 +34,11 @@ struct StandardLearningRate : public LearningRateSchedule {
struct ExponentialDecayLearningRate : public LearningRateSchedule {
ExponentialDecayLearningRate(
- size_t training_instances,
+ size_t batch_size, // batch size, not corpus size!
double eta_0 = 0.2,
double alpha = 0.85 // recommended by Tsuruoka et al. (ACL 2009)
) : eta_0_(eta_0),
- N_(static_cast<double>(training_instances)),
+ N_(static_cast<double>(batch_size)),
alpha_(alpha) {
assert(alpha > 0);
assert(alpha < 1.0);
@@ -50,17 +56,17 @@ class OnlineOptimizer {
public:
virtual ~OnlineOptimizer();
OnlineOptimizer(const std::tr1::shared_ptr<LearningRateSchedule>& s,
- size_t training_instances)
- : N_(training_instances),schedule_(s),k_() {}
- void UpdateWeights(const SparseVector<double>& approx_g, SparseVector<double>* weights) {
+ size_t batch_size)
+ : N_(batch_size),schedule_(s),k_() {}
+ void UpdateWeights(const SparseVector<double>& approx_g, int max_feat, SparseVector<double>* weights) {
++k_;
const double eta = schedule_->eta(k_);
- UpdateWeightsImpl(eta, approx_g, weights);
+ UpdateWeightsImpl(eta, approx_g, max_feat, weights);
}
protected:
- virtual void UpdateWeightsImpl(const double& eta, const SparseVector<double>& approx_g, SparseVector<double>* weights) = 0;
- const size_t N_; // number of training instances
+ virtual void UpdateWeightsImpl(const double& eta, const SparseVector<double>& approx_g, int max_feat, SparseVector<double>* weights) = 0;
+ const size_t N_; // number of training instances per batch
private:
std::tr1::shared_ptr<LearningRateSchedule> schedule_;
@@ -74,11 +80,11 @@ class CumulativeL1OnlineOptimizer : public OnlineOptimizer {
OnlineOptimizer(s, training_instances), C_(C), u_() {}
protected:
- void UpdateWeightsImpl(const double& eta, const SparseVector<double>& approx_g, SparseVector<double>* weights) {
+ void UpdateWeightsImpl(const double& eta, const SparseVector<double>& approx_g, int max_feat, SparseVector<double>* weights) {
u_ += eta * C_ / N_;
(*weights) += eta * approx_g;
- for (SparseVector<double>::const_iterator it = approx_g.begin(); it != approx_g.end(); ++it)
- ApplyPenalty(it->first, weights);
+ for (int i = 1; i < max_feat; ++i)
+ ApplyPenalty(i, weights);
}
private:
@@ -86,13 +92,19 @@ class CumulativeL1OnlineOptimizer : public OnlineOptimizer {
const double z = w->value(i);
double w_i = z;
double q_i = q_.value(i);
- if (w_i > 0)
+ if (w_i > 0.0)
w_i = std::max(0.0, w_i - (u_ + q_i));
- else
- w_i = std::max(0.0, w_i + (u_ - q_i));
+ else if (w_i < 0.0)
+ w_i = std::min(0.0, w_i + (u_ - q_i));
q_i += w_i - z;
- q_.set_value(i, q_i);
- w->set_value(i, w_i);
+ if (q_i == 0.0)
+ q_.erase(i);
+ else
+ q_.set_value(i, q_i);
+ if (w_i == 0.0)
+ w->erase(i);
+ else
+ w->set_value(i, w_i);
}
const double C_; // reguarlization strength