diff options
Diffstat (limited to 'training/dtrain')
-rw-r--r-- | training/dtrain/Makefile.am | 2 | ||||
-rw-r--r-- | training/dtrain/dtrain.cc | 201 | ||||
-rw-r--r-- | training/dtrain/dtrain.h | 2 | ||||
-rw-r--r-- | training/dtrain/examples/standard/dtrain.ini | 11 | ||||
-rw-r--r-- | training/dtrain/examples/standard/expected-output | 125 | ||||
-rw-r--r-- | training/dtrain/examples/standard/nc-wmt11.gz | bin | 0 -> 113504 bytes | |||
-rwxr-xr-x | training/dtrain/parallelize.rb | 20 |
7 files changed, 266 insertions, 95 deletions
diff --git a/training/dtrain/Makefile.am b/training/dtrain/Makefile.am index 844c790d..ecb6c128 100644 --- a/training/dtrain/Makefile.am +++ b/training/dtrain/Makefile.am @@ -1,7 +1,7 @@ bin_PROGRAMS = dtrain dtrain_SOURCES = dtrain.cc score.cc dtrain.h kbestget.h ksampler.h pairsampling.h score.h -dtrain_LDADD = ../../decoder/libcdec.a ../../klm/search/libksearch.a ../../mteval/libmteval.a ../../utils/libutils.a ../../klm/lm/libklm.a ../../klm/util/libklm_util.a ../../klm/util/double-conversion/libklm_util_double.a +dtrain_LDADD = ../../decoder/libcdec.a ../../klm/search/libksearch.a ../../mteval/libmteval.a ../../utils/libutils.a ../../klm/lm/libklm.a ../../klm/util/libklm_util.a ../../klm/util/double-conversion/libklm_util_double.a -lboost_regex AM_CPPFLAGS = -W -Wall -Wno-sign-compare -I$(top_srcdir)/utils -I$(top_srcdir)/decoder -I$(top_srcdir)/mteval diff --git a/training/dtrain/dtrain.cc b/training/dtrain/dtrain.cc index 0ee2f124..0a27a068 100644 --- a/training/dtrain/dtrain.cc +++ b/training/dtrain/dtrain.cc @@ -12,8 +12,9 @@ dtrain_init(int argc, char** argv, po::variables_map* cfg) { po::options_description ini("Configuration File Options"); ini.add_options() - ("input", po::value<string>()->default_value("-"), "input file (src)") + ("input", po::value<string>(), "input file (src)") ("refs,r", po::value<string>(), "references") + ("bitext,b", po::value<string>(), "bitext: 'src ||| tgt'") ("output", po::value<string>()->default_value("-"), "output weights file, '-' for STDOUT") ("input_weights", po::value<string>(), "input weights file (e.g. from previous iteration)") ("decoder_config", po::value<string>(), "configuration file for cdec") @@ -40,6 +41,10 @@ dtrain_init(int argc, char** argv, po::variables_map* cfg) ("scale_bleu_diff", po::value<bool>()->zero_tokens(), "learning rate <- bleu diff of a misranked pair") ("loss_margin", po::value<weight_t>()->default_value(0.), "update if no error in pref pair but model scores this near") ("max_pairs", po::value<unsigned>()->default_value(std::numeric_limits<unsigned>::max()), "max. # of pairs per Sent.") + ("pclr", po::value<string>()->default_value("no"), "use a (simple|adagrad) per-coordinate learning rate") + ("batch", po::value<bool>()->zero_tokens(), "do batch optimization") + ("repeat", po::value<unsigned>()->default_value(1), "repeat optimization over kbest list this number of times") + //("test-k-best", po::value<bool>()->zero_tokens(), "check if optimization works (use repeat >= 2)") ("noup", po::value<bool>()->zero_tokens(), "do not update weights"); po::options_description cl("Command Line Options"); cl.add_options() @@ -72,13 +77,17 @@ dtrain_init(int argc, char** argv, po::variables_map* cfg) cerr << "Wrong 'pair_sampling' param: '" << (*cfg)["pair_sampling"].as<string>() << "'." << endl; return false; } - if(cfg->count("hi_lo") && (*cfg)["pair_sampling"].as<string>() != "XYX") { + if (cfg->count("hi_lo") && (*cfg)["pair_sampling"].as<string>() != "XYX") { cerr << "Warning: hi_lo only works with pair_sampling XYX." << endl; } - if((*cfg)["hi_lo"].as<float>() > 0.5 || (*cfg)["hi_lo"].as<float>() < 0.01) { + if ((*cfg)["hi_lo"].as<float>() > 0.5 || (*cfg)["hi_lo"].as<float>() < 0.01) { cerr << "hi_lo must lie in [0.01, 0.5]" << endl; return false; } + if ((cfg->count("input")>0 || cfg->count("refs")>0) && cfg->count("bitext")>0) { + cerr << "Provide 'input' and 'refs' or 'bitext', not both." << endl; + return false; + } if ((*cfg)["pair_threshold"].as<score_t>() < 0) { cerr << "The threshold must be >= 0!" << endl; return false; @@ -120,10 +129,16 @@ main(int argc, char** argv) const float hi_lo = cfg["hi_lo"].as<float>(); const score_t approx_bleu_d = cfg["approx_bleu_d"].as<score_t>(); const unsigned max_pairs = cfg["max_pairs"].as<unsigned>(); + int repeat = cfg["repeat"].as<unsigned>(); + //bool test_k_best = false; + //if (cfg.count("test-k-best")) test_k_best = true; weight_t loss_margin = cfg["loss_margin"].as<weight_t>(); + bool batch = false; + if (cfg.count("batch")) batch = true; if (loss_margin > 9998.) loss_margin = std::numeric_limits<float>::max(); bool scale_bleu_diff = false; if (cfg.count("scale_bleu_diff")) scale_bleu_diff = true; + const string pclr = cfg["pclr"].as<string>(); bool average = false; if (select_weights == "avg") average = true; @@ -131,7 +146,6 @@ main(int argc, char** argv) if (cfg.count("print_weights")) boost::split(print_weights, cfg["print_weights"].as<string>(), boost::is_any_of(" ")); - // setup decoder register_feature_functions(); SetSilent(true); @@ -178,17 +192,16 @@ main(int argc, char** argv) observer->SetScorer(scorer); // init weights - vector<weight_t>& dense_weights = decoder.CurrentWeightVector(); + vector<weight_t>& decoder_weights = decoder.CurrentWeightVector(); SparseVector<weight_t> lambdas, cumulative_penalties, w_average; - if (cfg.count("input_weights")) Weights::InitFromFile(cfg["input_weights"].as<string>(), &dense_weights); - Weights::InitSparseVector(dense_weights, &lambdas); + if (cfg.count("input_weights")) Weights::InitFromFile(cfg["input_weights"].as<string>(), &decoder_weights); + Weights::InitSparseVector(decoder_weights, &lambdas); // meta params for perceptron, SVM weight_t eta = cfg["learning_rate"].as<weight_t>(); weight_t gamma = cfg["gamma"].as<weight_t>(); // faster perceptron: consider only misranked pairs, see - // DO NOT ENABLE WITH SVM (gamma > 0) OR loss_margin! bool faster_perceptron = false; if (gamma==0 && loss_margin==0) faster_perceptron = true; @@ -208,13 +221,24 @@ main(int argc, char** argv) // output string output_fn = cfg["output"].as<string>(); // input - string input_fn = cfg["input"].as<string>(); + bool read_bitext = false; + string input_fn; + if (cfg.count("bitext")) { + read_bitext = true; + input_fn = cfg["bitext"].as<string>(); + } else { + input_fn = cfg["input"].as<string>(); + } ReadFile input(input_fn); // buffer input for t > 0 vector<string> src_str_buf; // source strings (decoder takes only strings) vector<vector<WordID> > ref_ids_buf; // references as WordID vecs - string refs_fn = cfg["refs"].as<string>(); - ReadFile refs(refs_fn); + ReadFile refs; + string refs_fn; + if (!read_bitext) { + refs_fn = cfg["refs"].as<string>(); + refs.Init(refs_fn); + } unsigned in_sz = std::numeric_limits<unsigned>::max(); // input index, input size vector<pair<score_t, score_t> > all_scores; @@ -229,6 +253,7 @@ main(int argc, char** argv) cerr << setw(25) << "k " << k << endl; cerr << setw(25) << "N " << N << endl; cerr << setw(25) << "T " << T << endl; + cerr << setw(25) << "batch " << batch << endl; cerr << setw(26) << "scorer '" << scorer_str << "'" << endl; if (scorer_str == "approx_bleu") cerr << setw(25) << "approx. B discount " << approx_bleu_d << endl; @@ -249,10 +274,14 @@ main(int argc, char** argv) cerr << setw(25) << "l1 reg " << l1_reg << " '" << cfg["l1_reg"].as<string>() << "'" << endl; if (rescale) cerr << setw(25) << "rescale " << rescale << endl; + cerr << setw(25) << "pclr " << pclr << endl; cerr << setw(25) << "max pairs " << max_pairs << endl; + cerr << setw(25) << "repeat " << repeat << endl; + //cerr << setw(25) << "test k-best " << test_k_best << endl; cerr << setw(25) << "cdec cfg " << "'" << cfg["decoder_config"].as<string>() << "'" << endl; cerr << setw(25) << "input " << "'" << input_fn << "'" << endl; - cerr << setw(25) << "refs " << "'" << refs_fn << "'" << endl; + if (!read_bitext) + cerr << setw(25) << "refs " << "'" << refs_fn << "'" << endl; cerr << setw(25) << "output " << "'" << output_fn << "'" << endl; if (cfg.count("input_weights")) cerr << setw(25) << "weights in " << "'" << cfg["input_weights"].as<string>() << "'" << endl; @@ -261,6 +290,11 @@ main(int argc, char** argv) if (!verbose) cerr << "(a dot represents " << DTRAIN_DOTS << " inputs)" << endl; } + // pclr + SparseVector<weight_t> learning_rates; + // batch + SparseVector<weight_t> batch_updates; + score_t batch_loss; for (unsigned t = 0; t < T; t++) // T epochs { @@ -269,16 +303,24 @@ main(int argc, char** argv) time(&start); score_t score_sum = 0.; score_t model_sum(0); - unsigned ii = 0, rank_errors = 0, margin_violations = 0, npairs = 0, f_count = 0, list_sz = 0; + unsigned ii = 0, rank_errors = 0, margin_violations = 0, npairs = 0, f_count = 0, list_sz = 0, kbest_loss_improve = 0; + batch_loss = 0.; if (!quiet) cerr << "Iteration #" << t+1 << " of " << T << "." << endl; while(true) { string in; + string ref; bool next = false, stop = false; // next iteration or premature stop if (t == 0) { if(!getline(*input, in)) next = true; + if(read_bitext) { + vector<string> strs; + boost::algorithm::split_regex(strs, in, boost::regex(" \\|\\|\\| ")); + in = strs[0]; + ref = strs[1]; + } } else { if (ii == in_sz) next = true; // stop if we reach the end of our input } @@ -310,15 +352,16 @@ main(int argc, char** argv) if (next || stop) break; // weights - lambdas.init_vector(&dense_weights); + lambdas.init_vector(&decoder_weights); // getting input vector<WordID> ref_ids; // reference as vector<WordID> if (t == 0) { - string r_; - getline(*refs, r_); + if (!read_bitext) { + getline(*refs, ref); + } vector<string> ref_tok; - boost::split(ref_tok, r_, boost::is_any_of(" ")); + boost::split(ref_tok, ref, boost::is_any_of(" ")); register_and_convert(ref_tok, ref_ids); ref_ids_buf.push_back(ref_ids); src_str_buf.push_back(in); @@ -348,8 +391,10 @@ main(int argc, char** argv) } } - score_sum += (*samples)[0].score; // stats for 1best - model_sum += (*samples)[0].model; + if (repeat == 1) { + score_sum += (*samples)[0].score; // stats for 1best + model_sum += (*samples)[0].model; + } f_count += observer->get_f_count(); list_sz += observer->get_sz(); @@ -364,30 +409,74 @@ main(int argc, char** argv) partXYX(samples, pairs, pair_threshold, max_pairs, faster_perceptron, hi_lo); if (pair_sampling == "PRO") PROsampling(samples, pairs, pair_threshold, max_pairs); - npairs += pairs.size(); + int cur_npairs = pairs.size(); + npairs += cur_npairs; + + score_t kbest_loss_first, kbest_loss_last = 0.0; - SparseVector<weight_t> lambdas_copy; + for (vector<pair<ScoredHyp,ScoredHyp> >::iterator it = pairs.begin(); + it != pairs.end(); it++) { + score_t model_diff = it->first.model - it->second.model; + kbest_loss_first += max(0.0, -1.0 * model_diff); + } + + for (int ki=0; ki < repeat; ki++) { + + score_t kbest_loss = 0.0; // test-k-best + SparseVector<weight_t> lambdas_copy; // for l1 regularization + SparseVector<weight_t> sum_up; // for pclr if (l1naive||l1clip||l1cumul) lambdas_copy = lambdas; for (vector<pair<ScoredHyp,ScoredHyp> >::iterator it = pairs.begin(); it != pairs.end(); it++) { - bool rank_error; + score_t model_diff = it->first.model - it->second.model; + if (repeat > 1) { + model_diff = lambdas.dot(it->first.f) - lambdas.dot(it->second.f); + kbest_loss += max(0.0, -1.0 * model_diff); + } + bool rank_error = false; score_t margin; if (faster_perceptron) { // we only have considering misranked pairs rank_error = true; // pair sampling already did this for us margin = std::numeric_limits<float>::max(); } else { - rank_error = it->first.model <= it->second.model; - margin = fabs(it->first.model - it->second.model); + rank_error = model_diff<=0.0; + margin = fabs(model_diff); if (!rank_error && margin < loss_margin) margin_violations++; } - if (rank_error) rank_errors++; + if (rank_error && ki==1) rank_errors++; if (scale_bleu_diff) eta = it->first.score - it->second.score; if (rank_error || margin < loss_margin) { SparseVector<weight_t> diff_vec = it->first.f - it->second.f; - lambdas.plus_eq_v_times_s(diff_vec, eta); - if (gamma) - lambdas.plus_eq_v_times_s(lambdas, -2*gamma*eta*(1./npairs)); + if (batch) { + batch_loss += max(0., -1.0*model_diff); + batch_updates += diff_vec; + continue; + } + if (pclr != "no") { + sum_up += diff_vec; + } else { + lambdas.plus_eq_v_times_s(diff_vec, eta); + if (gamma) lambdas.plus_eq_v_times_s(lambdas, -2*gamma*eta*(1./cur_npairs)); + } + } + } + + // per-coordinate learning rate + if (pclr != "no") { + SparseVector<weight_t>::iterator it = sum_up.begin(); + for (; it != sum_up.end(); ++it) { + if (pclr == "simple") { + lambdas[it->first] += it->second / max(1.0, learning_rates[it->first]); + learning_rates[it->first]++; + } else if (pclr == "adagrad") { + if (learning_rates[it->first] == 0) { + lambdas[it->first] += it->second * eta; + } else { + lambdas[it->first] += it->second * eta * learning_rates[it->first]; + } + learning_rates[it->first] += pow(it->second, 2.0); + } } } @@ -395,14 +484,16 @@ main(int argc, char** argv) // please note that this regularizations happen // after a _sentence_ -- not after each example/pair! if (l1naive) { - FastSparseVector<weight_t>::iterator it = lambdas.begin(); + SparseVector<weight_t>::iterator it = lambdas.begin(); for (; it != lambdas.end(); ++it) { if (!lambdas_copy.get(it->first) || lambdas_copy.get(it->first)!=it->second) { + it->second *= max(0.0000001, eta/(eta+learning_rates[it->first])); // FIXME + learning_rates[it->first]++; it->second -= sign(it->second) * l1_reg; } } } else if (l1clip) { - FastSparseVector<weight_t>::iterator it = lambdas.begin(); + SparseVector<weight_t>::iterator it = lambdas.begin(); for (; it != lambdas.end(); ++it) { if (!lambdas_copy.get(it->first) || lambdas_copy.get(it->first)!=it->second) { if (it->second != 0) { @@ -417,7 +508,7 @@ main(int argc, char** argv) } } else if (l1cumul) { weight_t acc_penalty = (ii+1) * l1_reg; // ii is the index of the current input - FastSparseVector<weight_t>::iterator it = lambdas.begin(); + SparseVector<weight_t>::iterator it = lambdas.begin(); for (; it != lambdas.end(); ++it) { if (!lambdas_copy.get(it->first) || lambdas_copy.get(it->first)!=it->second) { if (it->second != 0) { @@ -435,7 +526,28 @@ main(int argc, char** argv) } } - } + if (ki==repeat-1) { // done + kbest_loss_last = kbest_loss; + if (repeat > 1) { + score_t best_score = -1.; + score_t best_model = -std::numeric_limits<score_t>::max(); + unsigned best_idx; + for (unsigned i=0; i < samples->size(); i++) { + score_t s = lambdas.dot((*samples)[i].f); + if (s > best_model) { + best_idx = i; + best_model = s; + } + } + score_sum += (*samples)[best_idx].score; + model_sum += best_model; + } + } + } // repeat + + if ((kbest_loss_first - kbest_loss_last) >= 0) kbest_loss_improve++; + + } // noup if (rescale) lambdas /= lambdas.l2norm(); @@ -443,14 +555,19 @@ main(int argc, char** argv) } // input loop - if (average) w_average += lambdas; + if (t == 0) in_sz = ii; // remember size of input (# lines) - if (scorer_str == "approx_bleu" || scorer_str == "lc_bleu") scorer->Reset(); - if (t == 0) { - in_sz = ii; // remember size of input (# lines) + if (batch) { + lambdas.plus_eq_v_times_s(batch_updates, eta); + if (gamma) lambdas.plus_eq_v_times_s(lambdas, -2*gamma*eta*(1./npairs)); + batch_updates.clear(); } + if (average) w_average += lambdas; + + if (scorer_str == "approx_bleu" || scorer_str == "lc_bleu") scorer->Reset(); + // print some stats score_t score_avg = score_sum/(score_t)in_sz; score_t model_avg = model_sum/(score_t)in_sz; @@ -477,13 +594,15 @@ main(int argc, char** argv) cerr << _np << " 1best avg model score: " << model_avg; cerr << _p << " (" << model_diff << ")" << endl; cerr << " avg # pairs: "; - cerr << _np << npairs/(float)in_sz; + cerr << _np << npairs/(float)in_sz << endl; + cerr << " avg # rank err: "; + cerr << rank_errors/(float)in_sz; if (faster_perceptron) cerr << " (meaningless)"; cerr << endl; - cerr << " avg # rank err: "; - cerr << rank_errors/(float)in_sz << endl; cerr << " avg # margin viol: "; cerr << margin_violations/(float)in_sz << endl; + if (batch) cerr << " batch loss: " << batch_loss << endl; + cerr << " k-best loss imp: " << ((float)kbest_loss_improve/in_sz)*100 << "%" << endl; cerr << " non0 feature count: " << nonz << endl; cerr << " avg list sz: " << list_sz/(float)in_sz << endl; cerr << " avg f count: " << f_count/(float)list_sz << endl; @@ -510,9 +629,9 @@ main(int argc, char** argv) // write weights to file if (select_weights == "best" || keep) { - lambdas.init_vector(&dense_weights); + lambdas.init_vector(&decoder_weights); string w_fn = "weights." + boost::lexical_cast<string>(t) + ".gz"; - Weights::WriteToFile(w_fn, dense_weights, true); + Weights::WriteToFile(w_fn, decoder_weights, true); } } // outer loop diff --git a/training/dtrain/dtrain.h b/training/dtrain/dtrain.h index 3981fb39..ccb5ad4d 100644 --- a/training/dtrain/dtrain.h +++ b/training/dtrain/dtrain.h @@ -9,6 +9,8 @@ #include <string.h> #include <boost/algorithm/string.hpp> +#include <boost/regex.hpp> +#include <boost/algorithm/string/regex.hpp> #include <boost/program_options.hpp> #include "decoder.h" diff --git a/training/dtrain/examples/standard/dtrain.ini b/training/dtrain/examples/standard/dtrain.ini index 23e94285..fc83f08e 100644 --- a/training/dtrain/examples/standard/dtrain.ini +++ b/training/dtrain/examples/standard/dtrain.ini @@ -1,5 +1,6 @@ -input=./nc-wmt11.de.gz -refs=./nc-wmt11.en.gz +#input=./nc-wmt11.de.gz +#refs=./nc-wmt11.en.gz +bitext=./nc-wmt11.gz output=- # a weights file (add .gz for gzip compression) or STDOUT '-' select_weights=VOID # output average (over epochs) weight vector decoder_config=./cdec.ini # config for cdec @@ -10,11 +11,11 @@ print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 Phr stop_after=10 # stop epoch after 10 inputs # interesting stuff -epochs=2 # run over input 2 times +epochs=3 # run over input 3 times k=100 # use 100best lists N=4 # optimize (approx) BLEU4 scorer=fixed_stupid_bleu # use 'stupid' BLEU+1 -learning_rate=1.0 # learning rate, don't care if gamma=0 (perceptron) +learning_rate=0.1 # learning rate, don't care if gamma=0 (perceptron) and loss_margin=0 (not margin perceptron) gamma=0 # use SVM reg sample_from=kbest # use kbest lists (as opposed to forest) filter=uniq # only unique entries in kbest (surface form) @@ -22,3 +23,5 @@ pair_sampling=XYX # hi_lo=0.1 # 10 vs 80 vs 10 and 80 vs 10 here pair_threshold=0 # minimum distance in BLEU (here: > 0) loss_margin=0 # update if correctly ranked, but within this margin +repeat=1 # repeat training on a kbest list 1 times +#batch=true # batch tuning, update after accumulating over all sentences and all kbest lists diff --git a/training/dtrain/examples/standard/expected-output b/training/dtrain/examples/standard/expected-output index 21f91244..75f47337 100644 --- a/training/dtrain/examples/standard/expected-output +++ b/training/dtrain/examples/standard/expected-output @@ -4,17 +4,18 @@ Reading ./nc-wmt11.en.srilm.gz ----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100 **************************************************************************************************** Example feature: Shape_S00000_T00000 -Seeding random number sequence to 970626287 +Seeding random number sequence to 3751911392 dtrain Parameters: k 100 N 4 - T 2 + T 3 + batch 0 scorer 'fixed_stupid_bleu' sample from 'kbest' filter 'uniq' - learning rate 1 + learning rate 0.1 gamma 0 loss margin 0 faster perceptron 1 @@ -23,69 +24,99 @@ Parameters: pair threshold 0 select weights 'VOID' l1 reg 0 'none' + pclr no max pairs 4294967295 + repeat 1 cdec cfg './cdec.ini' - input './nc-wmt11.de.gz' - refs './nc-wmt11.en.gz' + input './nc-wmt11.gz' output '-' stop_after 10 (a dot represents 10 inputs) -Iteration #1 of 2. +Iteration #1 of 3. . 10 Stopping after 10 input sentences. WEIGHTS - Glue = -614 - WordPenalty = +1256.8 - LanguageModel = +5610.5 - LanguageModel_OOV = -1449 - PhraseModel_0 = -2107 - PhraseModel_1 = -4666.1 - PhraseModel_2 = -2713.5 - PhraseModel_3 = +4204.3 - PhraseModel_4 = -1435.8 - PhraseModel_5 = +916 - PhraseModel_6 = +190 - PassThrough = -2527 + Glue = -110 + WordPenalty = -8.2082 + LanguageModel = -319.91 + LanguageModel_OOV = -19.2 + PhraseModel_0 = +312.82 + PhraseModel_1 = -161.02 + PhraseModel_2 = -433.65 + PhraseModel_3 = +291.03 + PhraseModel_4 = +252.32 + PhraseModel_5 = +50.6 + PhraseModel_6 = +146.7 + PassThrough = -38.7 --- - 1best avg score: 0.17874 (+0.17874) - 1best avg model score: 88399 (+88399) - avg # pairs: 798.2 (meaningless) - avg # rank err: 798.2 + 1best avg score: 0.16966 (+0.16966) + 1best avg model score: 29874 (+29874) + avg # pairs: 906.3 + avg # rank err: 0 (meaningless) avg # margin viol: 0 - non0 feature count: 887 + k-best loss imp: 100% + non0 feature count: 832 avg list sz: 91.3 - avg f count: 126.85 -(time 0.33 min, 2 s/S) + avg f count: 139.77 +(time 0.35 min, 2.1 s/S) -Iteration #2 of 2. +Iteration #2 of 3. . 10 WEIGHTS - Glue = -1025 - WordPenalty = +1751.5 - LanguageModel = +10059 - LanguageModel_OOV = -4490 - PhraseModel_0 = -2640.7 - PhraseModel_1 = -3757.4 - PhraseModel_2 = -1133.1 - PhraseModel_3 = +1837.3 - PhraseModel_4 = -3534.3 - PhraseModel_5 = +2308 - PhraseModel_6 = +1677 - PassThrough = -6222 + Glue = -122.1 + WordPenalty = +83.689 + LanguageModel = +233.23 + LanguageModel_OOV = -145.1 + PhraseModel_0 = +150.72 + PhraseModel_1 = -272.84 + PhraseModel_2 = -418.36 + PhraseModel_3 = +181.63 + PhraseModel_4 = -289.47 + PhraseModel_5 = +140.3 + PhraseModel_6 = +3.5 + PassThrough = -109.7 --- - 1best avg score: 0.30764 (+0.12891) - 1best avg model score: -2.5042e+05 (-3.3882e+05) - avg # pairs: 725.9 (meaningless) - avg # rank err: 725.9 + 1best avg score: 0.17399 (+0.004325) + 1best avg model score: 4936.9 (-24937) + avg # pairs: 662.4 + avg # rank err: 0 (meaningless) avg # margin viol: 0 - non0 feature count: 1499 + k-best loss imp: 100% + non0 feature count: 1240 avg list sz: 91.3 - avg f count: 114.34 -(time 0.32 min, 1.9 s/S) + avg f count: 125.11 +(time 0.27 min, 1.6 s/S) + +Iteration #3 of 3. + . 10 +WEIGHTS + Glue = -157.4 + WordPenalty = -1.7372 + LanguageModel = +686.18 + LanguageModel_OOV = -399.7 + PhraseModel_0 = -39.876 + PhraseModel_1 = -341.96 + PhraseModel_2 = -318.67 + PhraseModel_3 = +105.08 + PhraseModel_4 = -290.27 + PhraseModel_5 = -48.6 + PhraseModel_6 = -43.6 + PassThrough = -298.5 + --- + 1best avg score: 0.30742 (+0.13343) + 1best avg model score: -15393 (-20329) + avg # pairs: 623.8 + avg # rank err: 0 (meaningless) + avg # margin viol: 0 + k-best loss imp: 100% + non0 feature count: 1776 + avg list sz: 91.3 + avg f count: 118.58 +(time 0.28 min, 1.7 s/S) Writing weights file to '-' ... done --- -Best iteration: 2 [SCORE 'fixed_stupid_bleu'=0.30764]. -This took 0.65 min. +Best iteration: 3 [SCORE 'fixed_stupid_bleu'=0.30742]. +This took 0.9 min. diff --git a/training/dtrain/examples/standard/nc-wmt11.gz b/training/dtrain/examples/standard/nc-wmt11.gz Binary files differnew file mode 100644 index 00000000..c39c5aef --- /dev/null +++ b/training/dtrain/examples/standard/nc-wmt11.gz diff --git a/training/dtrain/parallelize.rb b/training/dtrain/parallelize.rb index 285f3c9b..60ca9422 100755 --- a/training/dtrain/parallelize.rb +++ b/training/dtrain/parallelize.rb @@ -21,6 +21,8 @@ opts = Trollop::options do opt :qsub, "use qsub", :type => :bool, :default => false opt :dtrain_binary, "path to dtrain binary", :type => :string opt :extra_qsub, "extra qsub args", :type => :string, :default => "" + opt :per_shard_decoder_configs, "give special decoder config per shard", :type => :string, :short => '-o' + opt :first_input_weights, "input weights for first iter", :type => :string, :default => '', :short => '-w' end usage if not opts[:config]&&opts[:shards]&&opts[:input]&&opts[:references] @@ -41,9 +43,11 @@ epochs = opts[:epochs] rand = opts[:randomize] reshard = opts[:reshard] predefined_shards = false +per_shard_decoder_configs = false if opts[:shards] == 0 predefined_shards = true num_shards = 0 + per_shard_decoder_configs = true if opts[:per_shard_decoder_configs] else num_shards = opts[:shards] end @@ -51,6 +55,7 @@ input = opts[:input] refs = opts[:references] use_qsub = opts[:qsub] shards_at_once = opts[:processes_at_once] +first_input_weights = opts[:first_input_weights] `mkdir work` @@ -101,6 +106,9 @@ refs_files = [] if predefined_shards input_files = File.new(input).readlines.map {|i| i.strip } refs_files = File.new(refs).readlines.map {|i| i.strip } + if per_shard_decoder_configs + decoder_configs = File.new(opts[:per_shard_decoder_configs]).readlines.map {|i| i.strip} + end num_shards = input_files.size else input_files, refs_files = make_shards input, refs, num_shards, 0, rand @@ -126,10 +134,18 @@ end else local_end = "2>work/out.#{shard}.#{epoch}" end + if per_shard_decoder_configs + cdec_cfg = "--decoder_config #{decoder_configs[shard]}" + else + cdec_cfg = "" + end + if first_input_weights!='' && epoch == 0 + input_weights = "--input_weights #{first_input_weights}" + end pids << Kernel.fork { - `#{qsub_str_start}#{dtrain_bin} -c #{ini}\ + `#{qsub_str_start}#{dtrain_bin} -c #{ini} #{cdec_cfg} #{input_weights}\ --input #{input_files[shard]}\ - --refs #{refs_files[shard]} #{input_weights}\ + --refs #{refs_files[shard]}\ --output work/weights.#{shard}.#{epoch}#{qsub_str_end} #{local_end}` } weights_files << "work/weights.#{shard}.#{epoch}" |