summaryrefslogtreecommitdiff
path: root/training/dtrain/score.h
diff options
context:
space:
mode:
Diffstat (limited to 'training/dtrain/score.h')
-rw-r--r--training/dtrain/score.h509
1 files changed, 387 insertions, 122 deletions
diff --git a/training/dtrain/score.h b/training/dtrain/score.h
index 1cdd3fa9..748b3317 100644
--- a/training/dtrain/score.h
+++ b/training/dtrain/score.h
@@ -6,215 +6,480 @@
namespace dtrain
{
-
struct NgramCounts
{
- unsigned N_;
- map<unsigned, score_t> clipped_;
- map<unsigned, score_t> sum_;
+ size_t N_;
+ map<size_t, weight_t> clipped;
+ map<size_t, weight_t> sum;
+
+ NgramCounts() {}
- NgramCounts(const unsigned N) : N_(N) { Zero(); }
+ NgramCounts(const size_t N) : N_(N) { zero(); }
inline void
operator+=(const NgramCounts& rhs)
{
- if (rhs.N_ > N_) Resize(rhs.N_);
- for (unsigned i = 0; i < N_; i++) {
- this->clipped_[i] += rhs.clipped_.find(i)->second;
- this->sum_[i] += rhs.sum_.find(i)->second;
+ if (rhs.N_ > N_) resize(rhs.N_);
+ for (size_t i = 0; i < N_; i++) {
+ this->clipped[i] += rhs.clipped.find(i)->second;
+ this->sum[i] += rhs.sum.find(i)->second;
}
}
- inline const NgramCounts
- operator+(const NgramCounts &other) const
- {
- NgramCounts result = *this;
- result += other;
- return result;
- }
-
inline void
- operator*=(const score_t rhs)
+ operator*=(const weight_t rhs)
{
- for (unsigned i = 0; i < N_; i++) {
- this->clipped_[i] *= rhs;
- this->sum_[i] *= rhs;
+ for (size_t i=0; i<N_; i++) {
+ this->clipped[i] *= rhs;
+ this->sum[i] *= rhs;
}
}
inline void
- Add(const unsigned count, const unsigned ref_count, const unsigned i)
+ add(const size_t count,
+ const size_t count_ref,
+ const size_t i)
{
assert(i < N_);
- if (count > ref_count) {
- clipped_[i] += ref_count;
+ if (count > count_ref) {
+ clipped[i] += count_ref;
} else {
- clipped_[i] += count;
+ clipped[i] += count;
}
- sum_[i] += count;
+ sum[i] += count;
}
inline void
- Zero()
+ zero()
{
- for (unsigned i = 0; i < N_; i++) {
- clipped_[i] = 0.;
- sum_[i] = 0.;
+ for (size_t i=0; i<N_; i++) {
+ clipped[i] = 0.;
+ sum[i] = 0.;
}
}
inline void
- One()
+ one()
{
- for (unsigned i = 0; i < N_; i++) {
- clipped_[i] = 1.;
- sum_[i] = 1.;
+ for (size_t i=0; i<N_; i++) {
+ clipped[i] = 1.;
+ sum[i] = 1.;
}
}
inline void
- Print()
- {
- for (unsigned i = 0; i < N_; i++) {
- cout << i+1 << "grams (clipped):\t" << clipped_[i] << endl;
- cout << i+1 << "grams:\t\t\t" << sum_[i] << endl;
- }
- }
-
- inline void Resize(unsigned N)
+ resize(size_t N)
{
if (N == N_) return;
else if (N > N_) {
- for (unsigned i = N_; i < N; i++) {
- clipped_[i] = 0.;
- sum_[i] = 0.;
+ for (size_t i = N_; i < N; i++) {
+ clipped[i] = 0.;
+ sum[i] = 0.;
}
} else { // N < N_
- for (unsigned i = N_-1; i > N-1; i--) {
- clipped_.erase(i);
- sum_.erase(i);
+ for (size_t i = N_-1; i > N-1; i--) {
+ clipped.erase(i);
+ sum.erase(i);
}
}
N_ = N;
}
};
-typedef map<vector<WordID>, unsigned> Ngrams;
+typedef map<vector<WordID>, size_t> Ngrams;
inline Ngrams
-make_ngrams(const vector<WordID>& s, const unsigned N)
+ngrams(const vector<WordID>& vw,
+ const size_t N)
{
- Ngrams ngrams;
+ Ngrams r;
vector<WordID> ng;
- for (size_t i = 0; i < s.size(); i++) {
+ for (size_t i=0; i<vw.size(); i++) {
ng.clear();
- for (unsigned j = i; j < min(i+N, s.size()); j++) {
- ng.push_back(s[j]);
- ngrams[ng]++;
+ for (size_t j=i; j<min(i+N, vw.size()); j++) {
+ ng.push_back(vw[j]);
+ r[ng]++;
}
}
- return ngrams;
+
+ return r;
}
inline NgramCounts
-make_ngram_counts(const vector<WordID>& hyp, const vector<WordID>& ref, const unsigned N)
+ngram_counts(const vector<WordID>& hyp,
+ const vector<Ngrams>& ngrams_ref,
+ const size_t N)
{
- Ngrams hyp_ngrams = make_ngrams(hyp, N);
- Ngrams ref_ngrams = make_ngrams(ref, N);
+ Ngrams ngrams_hyp = ngrams(hyp, N);
NgramCounts counts(N);
- Ngrams::iterator it;
- Ngrams::iterator ti;
- for (it = hyp_ngrams.begin(); it != hyp_ngrams.end(); it++) {
- ti = ref_ngrams.find(it->first);
- if (ti != ref_ngrams.end()) {
- counts.Add(it->second, ti->second, it->first.size() - 1);
- } else {
- counts.Add(it->second, 0, it->first.size() - 1);
+ Ngrams::iterator it, ti;
+ for (it = ngrams_hyp.begin(); it != ngrams_hyp.end(); it++) {
+ size_t max_ref_count = 0;
+ for (auto r: ngrams_ref) {
+ ti = r.find(it->first);
+ if (ti != r.end())
+ max_ref_count = max(max_ref_count, ti->second);
}
+ counts.add(it->second, min(it->second, max_ref_count), it->first.size()-1);
}
+
return counts;
}
-struct BleuScorer : public LocalScorer
+class Scorer
{
- score_t Bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len);
- score_t Score(const vector<WordID>& hyp, const vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);
- void Reset() {}
-};
+ protected:
+ const size_t N_;
+ vector<weight_t> w_;
+
+ public:
+ Scorer(size_t n): N_(n)
+ {
+ for (size_t i = 1; i <= N_; i++)
+ w_.push_back(1.0/N_);
+ }
-struct StupidBleuScorer : public LocalScorer
-{
- score_t Score(const vector<WordID>& hyp, const vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);
- void Reset() {}
-};
+ inline bool
+ init(const vector<WordID>& hyp,
+ const vector<Ngrams>& reference_ngrams,
+ const vector<size_t>& reference_lengths,
+ size_t& hl,
+ size_t& rl,
+ size_t& M,
+ vector<weight_t>& v,
+ NgramCounts& counts)
+ {
+ hl = hyp.size();
+ if (hl == 0)
+ return false;
+ rl = best_match_length(hl, reference_lengths);
+ if (rl == 0)
+ return false;
+ counts = ngram_counts(hyp, reference_ngrams, N_);
+ if (rl < N_) {
+ M = rl;
+ for (size_t i = 0; i < M; i++) v.push_back(1/((weight_t)M));
+ } else {
+ M = N_;
+ v = w_;
+ }
-struct FixedStupidBleuScorer : public LocalScorer
-{
- score_t Score(const vector<WordID>& hyp, const vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);
- void Reset() {}
+ return true;
+ }
+
+ inline weight_t
+ brevity_penalty(const size_t hl,
+ const size_t rl)
+ {
+ if (hl > rl)
+ return 1;
+
+ return exp(1 - (weight_t)rl/hl);
+ }
+
+ inline size_t
+ best_match_length(const size_t hl,
+ const vector<size_t>& reference_lengths)
+ {
+ size_t m;
+ if (reference_lengths.size() == 1) {
+ m = reference_lengths.front();
+ } else {
+ size_t i = 0, best_idx = 0;
+ size_t best = numeric_limits<size_t>::max();
+ for (auto l: reference_lengths) {
+ size_t d = abs(hl-l);
+ if (d < best) {
+ best_idx = i;
+ best = d;
+ }
+ i += 1;
+ }
+ m = reference_lengths[best_idx];
+ }
+
+ return m;
+ }
+
+ virtual weight_t
+ score(const vector<WordID>&,
+ const vector<Ngrams>&,
+ const vector<size_t>&) = 0;
+
+ void
+ update_context(const vector<WordID>& /*hyp*/,
+ const vector<Ngrams>& /*reference_ngrams*/,
+ const vector<size_t>& /*reference_lengths*/,
+ weight_t /*decay*/) {}
};
-struct SmoothBleuScorer : public LocalScorer
+/*
+ * ['fixed'] per-sentence BLEU
+ * simply add 'fix' (1) to reference length for calculation of BP
+ * to avoid short translations
+ *
+ * as in "Optimizing for Sentence-Level BLEU+1
+ * Yields Short Translations"
+ * (Nakov et al. '12)
+ *
+ */
+class NakovBleuScorer : public Scorer
{
- score_t Score(const vector<WordID>& hyp, const vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);
- void Reset() {}
+ weight_t fix;
+
+ public:
+ NakovBleuScorer(size_t n, weight_t fix) : Scorer(n), fix(fix) {}
+
+ weight_t
+ score(const vector<WordID>& hyp,
+ const vector<Ngrams>& reference_ngrams,
+ const vector<size_t>& reference_lengths)
+ {
+ size_t hl, rl, M;
+ vector<weight_t> v;
+ NgramCounts counts;
+ if (!init(hyp, reference_ngrams, reference_lengths, hl, rl, M, v, counts))
+ return 0.;
+ weight_t sum=0, add=0;
+ for (size_t i=0; i<M; i++) {
+ if (i == 0 && (counts.sum[i]==0 || counts.clipped[i]==0)) return 0.;
+ if (i > 0) add = 1;
+ sum += v[i] * log(((weight_t)counts.clipped[i] + add)
+ / ((counts.sum[i] + add)));
+ }
+
+ return brevity_penalty(hl, rl+1) * exp(sum);
+ }
};
-struct SumBleuScorer : public LocalScorer
+/*
+ * BLEU
+ * 0 if for one n \in {1..N} count is 0
+ *
+ * as in "BLEU: a Method for Automatic Evaluation
+ * of Machine Translation"
+ * (Papineni et al. '02)
+ *
+ */
+class PapineniBleuScorer : public Scorer
{
- score_t Score(const vector<WordID>& hyp, const vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);
- void Reset() {}
+ public:
+ PapineniBleuScorer(size_t n) : Scorer(n) {}
+
+ weight_t
+ score(const vector<WordID>& hyp,
+ const vector<Ngrams>& reference_ngrams,
+ const vector<size_t>& reference_lengths)
+ {
+ size_t hl, rl, M;
+ vector<weight_t> v;
+ NgramCounts counts;
+ if (!init(hyp, reference_ngrams, reference_lengths, hl, rl, M, v, counts))
+ return 0.;
+ weight_t sum = 0;
+ for (size_t i=0; i<M; i++) {
+ if (counts.sum[i] == 0 || counts.clipped[i] == 0) return 0.;
+ sum += v[i] * log((weight_t)counts.clipped[i]/counts.sum[i]);
+ }
+
+ return brevity_penalty(hl, rl) * exp(sum);
+ }
};
-struct SumExpBleuScorer : public LocalScorer
+/*
+ * original BLEU+1
+ * 0 iff no 1gram match ('grounded')
+ *
+ * as in "ORANGE: a Method for Evaluating
+ * Automatic Evaluation Metrics
+ * for Machine Translation"
+ * (Lin & Och '04)
+ *
+ */
+class LinBleuScorer : public Scorer
{
- score_t Score(const vector<WordID>& hyp, const vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);
- void Reset() {}
+ public:
+ LinBleuScorer(size_t n) : Scorer(n) {}
+
+ weight_t
+ score(const vector<WordID>& hyp,
+ const vector<Ngrams>& reference_ngrams,
+ const vector<size_t>& reference_lengths)
+ {
+ size_t hl, rl, M;
+ vector<weight_t> v;
+ NgramCounts counts;
+ if (!init(hyp, reference_ngrams, reference_lengths, hl, rl, M, v, counts))
+ return 0.;
+ weight_t sum=0, add=0;
+ for (size_t i=0; i<M; i++) {
+ if (i == 0 && (counts.sum[i]==0 || counts.clipped[i]==0)) return 0.;
+ if (i == 1) add = 1;
+ sum += v[i] * log(((weight_t)counts.clipped[i] + add)
+ / ((counts.sum[i] + add)));
+ }
+
+ return brevity_penalty(hl, rl) * exp(sum);
+ }
};
-struct SumWhateverBleuScorer : public LocalScorer
+/*
+ * smooth BLEU
+ * max is 0.9375 (with N=4)
+ *
+ * as in "An End-to-End Discriminative Approach
+ * to Machine Translation"
+ * (Liang et al. '06)
+ *
+ */
+class LiangBleuScorer : public Scorer
{
- score_t Score(const vector<WordID>& hyp, const vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);
- void Reset() {};
+ public:
+ LiangBleuScorer(size_t n) : Scorer(n) {}
+
+ weight_t
+ score(const vector<WordID>& hyp,
+ const vector<Ngrams>& reference_ngrams,
+ const vector<size_t>& reference_lengths)
+ {
+ size_t hl=hyp.size(), rl=best_match_length(hl, reference_lengths);
+ if (hl == 0 || rl == 0) return 0.;
+ NgramCounts counts = ngram_counts(hyp, reference_ngrams, N_);
+ size_t M = N_;
+ if (rl < N_) M = rl;
+ weight_t sum = 0.;
+ vector<weight_t> i_bleu;
+ for (size_t i=0; i<M; i++)
+ i_bleu.push_back(0.);
+ for (size_t i=0; i<M; i++) {
+ if (counts.sum[i]==0 || counts.clipped[i]==0) {
+ break;
+ } else {
+ weight_t i_score = log((weight_t)counts.clipped[i]/counts.sum[i]);
+ for (size_t j=i; j<M; j++) {
+ i_bleu[j] += (1/((weight_t)j+1)) * i_score;
+ }
+ }
+ sum += exp(i_bleu[i])/pow(2.0, (double)(N_-i));
+ }
+
+ return brevity_penalty(hl, rl) * sum;
+ }
};
-struct ApproxBleuScorer : public BleuScorer
+/*
+ * approx. bleu
+ * Needs some more code in dtrain.cc .
+ * We do not scale by source length, as hypotheses are compared only
+ * within single k-best lists, not globally (as in batch algorithms).
+ * TODO: reset after one iteration?
+ * TODO: maybe scale by source length?
+ *
+ * as in "Online Large-Margin Training of Syntactic
+ * and Structural Translation Features"
+ * (Chiang et al. '08)
+ *
+ */
+class ChiangBleuScorer : public Scorer
{
- NgramCounts glob_onebest_counts_;
- unsigned glob_hyp_len_, glob_ref_len_, glob_src_len_;
- score_t discount_;
-
- ApproxBleuScorer(unsigned N, score_t d) : glob_onebest_counts_(NgramCounts(N)), discount_(d)
- {
- glob_hyp_len_ = glob_ref_len_ = glob_src_len_ = 0;
- }
+ private:
+ NgramCounts context;
+ weight_t hyp_sz_sum;
+ weight_t ref_sz_sum;
+
+ public:
+ ChiangBleuScorer(size_t n) :
+ Scorer(n), context(n), hyp_sz_sum(0), ref_sz_sum(0) {}
+
+ weight_t
+ score(const vector<WordID>& hyp,
+ const vector<Ngrams>& reference_ngrams,
+ const vector<size_t>& reference_lengths)
+ {
+ size_t hl, rl, M;
+ vector<weight_t> v;
+ NgramCounts counts;
+ if (!init(hyp, reference_ngrams, reference_lengths, hl, rl, M, v, counts))
+ return 0.;
+ counts += context;
+ weight_t sum = 0;
+ for (size_t i = 0; i < M; i++) {
+ if (counts.sum[i]==0 || counts.clipped[i]==0) return 0.;
+ sum += v[i] * log((weight_t)counts.clipped[i] / counts.sum[i]);
+ }
- inline void Reset() {
- glob_onebest_counts_.Zero();
- glob_hyp_len_ = glob_ref_len_ = glob_src_len_ = 0.;
- }
+ return brevity_penalty(hyp_sz_sum+hl, ref_sz_sum+rl) * exp(sum);
+ }
- score_t Score(const vector<WordID>& hyp, const vector<WordID>& ref, const unsigned rank, const unsigned src_len);
+ void
+ update_context(const vector<WordID>& hyp,
+ const vector<Ngrams>& reference_ngrams,
+ const vector<size_t>& reference_lengths,
+ weight_t decay=0.9)
+ {
+ size_t hl, rl, M;
+ vector<weight_t> v;
+ NgramCounts counts;
+ init(hyp, reference_ngrams, reference_lengths, hl, rl, M, v, counts);
+
+ context += counts;
+ context *= decay;
+ hyp_sz_sum += hl;
+ hyp_sz_sum *= decay;
+ ref_sz_sum += rl;
+ ref_sz_sum *= decay;
+ }
};
-struct LinearBleuScorer : public BleuScorer
+/*
+ * 'sum' bleu
+ *
+ * Merely sum up Ngram precisions
+ */
+class SumBleuScorer : public Scorer
{
- unsigned onebest_len_;
- NgramCounts onebest_counts_;
-
- LinearBleuScorer(unsigned N) : onebest_len_(1), onebest_counts_(N)
- {
- onebest_counts_.One();
- }
-
- score_t Score(const vector<WordID>& hyp, const vector<WordID>& ref, const unsigned rank, const unsigned /*src_len*/);
+ public:
+ SumBleuScorer(size_t n) : Scorer(n) {}
+
+ weight_t
+ score(const vector<WordID>& hyp,
+ const vector<Ngrams>& reference_ngrams,
+ const vector<size_t>& reference_lengths)
+ {
+ size_t hl, rl, M;
+ vector<weight_t> v;
+ NgramCounts counts;
+ if (!init(hyp, reference_ngrams, reference_lengths, hl, rl, M, v, counts))
+ return 0.;
+ weight_t sum = 0.;
+ size_t j = 1;
+ for (size_t i=0; i<M; i++) {
+ if (counts.sum[i]==0 || counts.clipped[i]==0) break;
+ sum += ((weight_t)counts.clipped[i]/counts.sum[i])
+ / pow(2.0, (weight_t) (N_-j+1));
+ //sum += exp(((score_t)counts.clipped[i]/counts.sum[i]))
+ // / pow(2.0, (weight_t) (N_-j+1));
+ //sum += exp(v[i] * log(((score_t)counts.clipped[i]/counts.sum[i])))
+ // / pow(2.0, (weight_t) (N_-j+1));
+ j++;
+ }
- inline void Reset() {
- onebest_len_ = 1;
- onebest_counts_.One();
- }
+ return brevity_penalty(hl, rl) * sum;
+ }
};
+/*
+ * Linear (Corpus) Bleu
+ * TODO
+ *
+ * as in "Lattice Minimum Bayes-Risk Decoding
+ * for Statistical Machine Translation"
+ * (Tromble et al. '08)
+ * or "Hope and fear for discriminative training of
+ * statistical translation models"
+ * (Chiang '12)
+ *
+ */
} // namespace