diff options
Diffstat (limited to 'training/dtrain/sample.h')
-rw-r--r-- | training/dtrain/sample.h | 59 |
1 files changed, 59 insertions, 0 deletions
diff --git a/training/dtrain/sample.h b/training/dtrain/sample.h new file mode 100644 index 00000000..1249e372 --- /dev/null +++ b/training/dtrain/sample.h @@ -0,0 +1,59 @@ +#ifndef _DTRAIN_SAMPLE_H_ +#define _DTRAIN_SAMPLE_H_ + +#include "kbest.h" + +#include "score.h" + +namespace dtrain +{ + +struct ScoredKbest : public DecoderObserver +{ + const size_t k_; + size_t feature_count_, effective_sz_; + vector<ScoredHyp> samples_; + Scorer* scorer_; + vector<Ngrams>* ref_ngs_; + vector<size_t>* ref_ls_; + + ScoredKbest(const size_t k, Scorer* scorer) : + k_(k), scorer_(scorer) {} + + virtual void + NotifyTranslationForest(const SentenceMetadata& /*smeta*/, Hypergraph* hg) + { + samples_.clear(); effective_sz_ = feature_count_ = 0; + KBest::KBestDerivations<vector<WordID>, ESentenceTraversal, + KBest::FilterUnique, prob_t, EdgeProb> kbest(*hg, k_); + for (size_t i = 0; i < k_; ++i) { + const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal, + KBest::FilterUnique, prob_t, EdgeProb>::Derivation* d = + kbest.LazyKthBest(hg->nodes_.size() - 1, i); + if (!d) break; + ScoredHyp h; + h.w = d->yield; + h.f = d->feature_values; + h.model = log(d->score); + h.rank = i; + h.gold = scorer_->Score(h.w, *ref_ngs_, *ref_ls_); + samples_.push_back(h); + effective_sz_++; + feature_count_ += h.f.size(); + } + } + + vector<ScoredHyp>* GetSamples() { return &samples_; } + inline void SetReference(vector<Ngrams>& ngs, vector<size_t>& ls) + { + ref_ngs_ = &ngs; + ref_ls_ = &ls; + } + inline size_t GetFeatureCount() { return feature_count_; } + inline size_t GetSize() { return effective_sz_; } +}; + +} // namespace + +#endif + |