summaryrefslogtreecommitdiff
path: root/training/dtrain/kbestget.h
diff options
context:
space:
mode:
Diffstat (limited to 'training/dtrain/kbestget.h')
-rw-r--r--training/dtrain/kbestget.h88
1 files changed, 0 insertions, 88 deletions
diff --git a/training/dtrain/kbestget.h b/training/dtrain/kbestget.h
deleted file mode 100644
index 85252db3..00000000
--- a/training/dtrain/kbestget.h
+++ /dev/null
@@ -1,88 +0,0 @@
-#ifndef _DTRAIN_KBESTGET_H_
-#define _DTRAIN_KBESTGET_H_
-
-#include "kbest.h"
-
-namespace dtrain
-{
-
-
-struct KBestGetter : public HypSampler
-{
- const unsigned k_;
- const string filter_type_;
- vector<ScoredHyp> s_;
- unsigned src_len_;
-
- KBestGetter(const unsigned k, const string filter_type) :
- k_(k), filter_type_(filter_type) {}
-
- virtual void
- NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg)
- {
- src_len_ = smeta.GetSourceLength();
- KBestScored(*hg);
- }
-
- vector<ScoredHyp>* GetSamples() { return &s_; }
-
- void
- KBestScored(const Hypergraph& forest)
- {
- if (filter_type_ == "uniq") {
- KBestUnique(forest);
- } else if (filter_type_ == "not") {
- KBestNoFilter(forest);
- }
- }
-
- void
- KBestUnique(const Hypergraph& forest)
- {
- s_.clear(); sz_ = f_count_ = 0;
- KBest::KBestDerivations<vector<WordID>, ESentenceTraversal,
- KBest::FilterUnique, prob_t, EdgeProb> kbest(forest, k_);
- for (unsigned i = 0; i < k_; ++i) {
- const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal, KBest::FilterUnique,
- prob_t, EdgeProb>::Derivation* d =
- kbest.LazyKthBest(forest.nodes_.size() - 1, i);
- if (!d) break;
- ScoredHyp h;
- h.w = d->yield;
- h.f = d->feature_values;
- h.model = log(d->score);
- h.rank = i;
- h.score = scorer_->Score(h.w, *ref_, i, src_len_);
- s_.push_back(h);
- sz_++;
- f_count_ += h.f.size();
- }
- }
-
- void
- KBestNoFilter(const Hypergraph& forest)
- {
- s_.clear(); sz_ = f_count_ = 0;
- KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(forest, k_);
- for (unsigned i = 0; i < k_; ++i) {
- const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d =
- kbest.LazyKthBest(forest.nodes_.size() - 1, i);
- if (!d) break;
- ScoredHyp h;
- h.w = d->yield;
- h.f = d->feature_values;
- h.model = log(d->score);
- h.rank = i;
- h.score = scorer_->Score(h.w, *ref_, i, src_len_);
- s_.push_back(h);
- sz_++;
- f_count_ += h.f.size();
- }
- }
-};
-
-
-} // namespace
-
-#endif
-