summaryrefslogtreecommitdiff
path: root/src/hg.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/hg.cc')
-rw-r--r--src/hg.cc486
1 files changed, 0 insertions, 486 deletions
diff --git a/src/hg.cc b/src/hg.cc
deleted file mode 100644
index 7bd79394..00000000
--- a/src/hg.cc
+++ /dev/null
@@ -1,486 +0,0 @@
-#include "hg.h"
-
-#include <cassert>
-#include <numeric>
-#include <set>
-#include <map>
-#include <iostream>
-
-#include "viterbi.h"
-#include "inside_outside.h"
-#include "tdict.h"
-
-using namespace std;
-
-double Hypergraph::NumberOfPaths() const {
- return Inside<double, TransitionCountWeightFunction>(*this);
-}
-
-prob_t Hypergraph::ComputeEdgePosteriors(double scale, vector<prob_t>* posts) const {
- const ScaledEdgeProb weight(scale);
- SparseVector<double> pv;
- const double inside = InsideOutside<prob_t,
- ScaledEdgeProb,
- SparseVector<double>,
- EdgeFeaturesWeightFunction>(*this, &pv, weight);
- posts->resize(edges_.size());
- for (int i = 0; i < edges_.size(); ++i)
- (*posts)[i] = prob_t(pv.value(i));
- return prob_t(inside);
-}
-
-prob_t Hypergraph::ComputeBestPathThroughEdges(vector<prob_t>* post) const {
- vector<prob_t> in(edges_.size());
- vector<prob_t> out(edges_.size());
- post->resize(edges_.size());
-
- vector<prob_t> ins_node_best(nodes_.size());
- for (int i = 0; i < nodes_.size(); ++i) {
- const Node& node = nodes_[i];
- prob_t& node_ins_best = ins_node_best[i];
- if (node.in_edges_.empty()) node_ins_best = prob_t::One();
- for (int j = 0; j < node.in_edges_.size(); ++j) {
- const Edge& edge = edges_[node.in_edges_[j]];
- prob_t& in_edge_sco = in[node.in_edges_[j]];
- in_edge_sco = edge.edge_prob_;
- for (int k = 0; k < edge.tail_nodes_.size(); ++k)
- in_edge_sco *= ins_node_best[edge.tail_nodes_[k]];
- if (in_edge_sco > node_ins_best) node_ins_best = in_edge_sco;
- }
- }
- const prob_t ins_sco = ins_node_best[nodes_.size() - 1];
-
- // sanity check
- int tots = 0;
- for (int i = 0; i < nodes_.size(); ++i) { if (nodes_[i].out_edges_.empty()) tots++; }
- assert(tots == 1);
-
- // compute outside scores, potentially using inside scores
- vector<prob_t> out_node_best(nodes_.size());
- for (int i = nodes_.size() - 1; i >= 0; --i) {
- const Node& node = nodes_[i];
- prob_t& node_out_best = out_node_best[node.id_];
- if (node.out_edges_.empty()) node_out_best = prob_t::One();
- for (int j = 0; j < node.out_edges_.size(); ++j) {
- const Edge& edge = edges_[node.out_edges_[j]];
- prob_t sco = edge.edge_prob_ * out_node_best[edge.head_node_];
- for (int k = 0; k < edge.tail_nodes_.size(); ++k) {
- if (edge.tail_nodes_[k] != i)
- sco *= ins_node_best[edge.tail_nodes_[k]];
- }
- if (sco > node_out_best) node_out_best = sco;
- }
- for (int j = 0; j < node.in_edges_.size(); ++j) {
- out[node.in_edges_[j]] = node_out_best;
- }
- }
-
- for (int i = 0; i < in.size(); ++i)
- (*post)[i] = in[i] * out[i];
- // for (int i = 0; i < in.size(); ++i)
- // cerr << "edge " << i << ": " << log((*post)[i]) << endl;
-
- return ins_sco;
-}
-
-void Hypergraph::PushWeightsToSource(double scale) {
- vector<prob_t> posts;
- ComputeEdgePosteriors(scale, &posts);
- for (int i = 0; i < nodes_.size(); ++i) {
- const Hypergraph::Node& node = nodes_[i];
- prob_t z = prob_t::Zero();
- for (int j = 0; j < node.out_edges_.size(); ++j)
- z += posts[node.out_edges_[j]];
- for (int j = 0; j < node.out_edges_.size(); ++j) {
- edges_[node.out_edges_[j]].edge_prob_ = posts[node.out_edges_[j]] / z;
- }
- }
-}
-
-void Hypergraph::PushWeightsToGoal(double scale) {
- vector<prob_t> posts;
- ComputeEdgePosteriors(scale, &posts);
- for (int i = 0; i < nodes_.size(); ++i) {
- const Hypergraph::Node& node = nodes_[i];
- prob_t z = prob_t::Zero();
- for (int j = 0; j < node.in_edges_.size(); ++j)
- z += posts[node.in_edges_[j]];
- for (int j = 0; j < node.in_edges_.size(); ++j) {
- edges_[node.in_edges_[j]].edge_prob_ = posts[node.in_edges_[j]] / z;
- }
- }
-}
-
-void Hypergraph::PruneEdges(const std::vector<bool>& prune_edge) {
- assert(prune_edge.size() == edges_.size());
- TopologicallySortNodesAndEdges(nodes_.size() - 1, &prune_edge);
-}
-
-void Hypergraph::DensityPruneInsideOutside(const double scale,
- const bool use_sum_prod_semiring,
- const double density,
- const vector<bool>* preserve_mask) {
- assert(density >= 1.0);
- const int plen = ViterbiPathLength(*this);
- vector<WordID> bp;
- int rnum = min(static_cast<int>(edges_.size()), static_cast<int>(density * static_cast<double>(plen)));
- if (rnum == edges_.size()) {
- cerr << "No pruning required: denisty already sufficient";
- return;
- }
- vector<prob_t> io(edges_.size());
- if (use_sum_prod_semiring)
- ComputeEdgePosteriors(scale, &io);
- else
- ComputeBestPathThroughEdges(&io);
- assert(edges_.size() == io.size());
- vector<prob_t> sorted = io;
- nth_element(sorted.begin(), sorted.begin() + rnum, sorted.end(), greater<prob_t>());
- const double cutoff = sorted[rnum];
- vector<bool> prune(edges_.size());
- for (int i = 0; i < edges_.size(); ++i) {
- prune[i] = (io[i] < cutoff);
- if (preserve_mask && (*preserve_mask)[i]) prune[i] = false;
- }
- PruneEdges(prune);
-}
-
-void Hypergraph::BeamPruneInsideOutside(
- const double scale,
- const bool use_sum_prod_semiring,
- const double alpha,
- const vector<bool>* preserve_mask) {
- assert(alpha > 0.0);
- assert(scale > 0.0);
- vector<prob_t> io(edges_.size());
- if (use_sum_prod_semiring)
- ComputeEdgePosteriors(scale, &io);
- else
- ComputeBestPathThroughEdges(&io);
- assert(edges_.size() == io.size());
- prob_t best; // initializes to zero
- for (int i = 0; i < io.size(); ++i)
- if (io[i] > best) best = io[i];
- const prob_t aprob(exp(-alpha));
- const prob_t cutoff = best * aprob;
- // cerr << "aprob = " << aprob << "\t CUTOFF=" << cutoff << endl;
- vector<bool> prune(edges_.size());
- //cerr << preserve_mask.size() << " " << edges_.size() << endl;
- int pc = 0;
- for (int i = 0; i < io.size(); ++i) {
- const bool prune_edge = (io[i] < cutoff);
- if (prune_edge) ++pc;
- prune[i] = (io[i] < cutoff);
- if (preserve_mask && (*preserve_mask)[i]) prune[i] = false;
- }
- // cerr << "Beam pruning " << pc << "/" << io.size() << " edges\n";
- PruneEdges(prune);
-}
-
-void Hypergraph::PrintGraphviz() const {
- int ei = 0;
- cerr << "digraph G {\n rankdir=LR;\n nodesep=.05;\n";
- for (vector<Edge>::const_iterator i = edges_.begin();
- i != edges_.end(); ++i) {
- const Edge& edge=*i;
- ++ei;
- static const string none = "<null>";
- string rule = (edge.rule_ ? edge.rule_->AsString(false) : none);
-
- cerr << " A_" << ei << " [label=\"" << rule << " p=" << edge.edge_prob_
- << " F:" << edge.feature_values_
- << "\" shape=\"rect\"];\n";
- for (int i = 0; i < edge.tail_nodes_.size(); ++i) {
- cerr << " " << edge.tail_nodes_[i] << " -> A_" << ei << ";\n";
- }
- cerr << " A_" << ei << " -> " << edge.head_node_ << ";\n";
- }
- for (vector<Node>::const_iterator ni = nodes_.begin();
- ni != nodes_.end(); ++ni) {
- cerr << " " << ni->id_ << "[label=\"" << (ni->cat_ < 0 ? TD::Convert(ni->cat_ * -1) : "")
- //cerr << " " << ni->id_ << "[label=\"" << ni->cat_
- << " n=" << ni->id_
-// << ",x=" << &*ni
-// << ",in=" << ni->in_edges_.size()
-// << ",out=" << ni->out_edges_.size()
- << "\"];\n";
- }
- cerr << "}\n";
-}
-
-void Hypergraph::Union(const Hypergraph& other) {
- if (&other == this) return;
- if (nodes_.empty()) { nodes_ = other.nodes_; edges_ = other.edges_; return; }
- int noff = nodes_.size();
- int eoff = edges_.size();
- int ogoal = other.nodes_.size() - 1;
- int cgoal = noff - 1;
- // keep a single goal node, so add nodes.size - 1
- nodes_.resize(nodes_.size() + ogoal);
- // add all edges
- edges_.resize(edges_.size() + other.edges_.size());
-
- for (int i = 0; i < ogoal; ++i) {
- const Node& on = other.nodes_[i];
- Node& cn = nodes_[i + noff];
- cn.id_ = i + noff;
- cn.in_edges_.resize(on.in_edges_.size());
- for (int j = 0; j < on.in_edges_.size(); ++j)
- cn.in_edges_[j] = on.in_edges_[j] + eoff;
-
- cn.out_edges_.resize(on.out_edges_.size());
- for (int j = 0; j < on.out_edges_.size(); ++j)
- cn.out_edges_[j] = on.out_edges_[j] + eoff;
- }
-
- for (int i = 0; i < other.edges_.size(); ++i) {
- const Edge& oe = other.edges_[i];
- Edge& ce = edges_[i + eoff];
- ce.id_ = i + eoff;
- ce.rule_ = oe.rule_;
- ce.feature_values_ = oe.feature_values_;
- if (oe.head_node_ == ogoal) {
- ce.head_node_ = cgoal;
- nodes_[cgoal].in_edges_.push_back(ce.id_);
- } else {
- ce.head_node_ = oe.head_node_ + noff;
- }
- ce.tail_nodes_.resize(oe.tail_nodes_.size());
- for (int j = 0; j < oe.tail_nodes_.size(); ++j)
- ce.tail_nodes_[j] = oe.tail_nodes_[j] + noff;
- }
-
- TopologicallySortNodesAndEdges(cgoal);
-}
-
-int Hypergraph::MarkReachable(const Node& node,
- vector<bool>* rmap,
- const vector<bool>* prune_edges) const {
- int total = 0;
- if (!(*rmap)[node.id_]) {
- total = 1;
- (*rmap)[node.id_] = true;
- for (int i = 0; i < node.in_edges_.size(); ++i) {
- if (!(prune_edges && (*prune_edges)[node.in_edges_[i]])) {
- for (int j = 0; j < edges_[node.in_edges_[i]].tail_nodes_.size(); ++j)
- total += MarkReachable(nodes_[edges_[node.in_edges_[i]].tail_nodes_[j]], rmap, prune_edges);
- }
- }
- }
- return total;
-}
-
-void Hypergraph::PruneUnreachable(int goal_node_id) {
- TopologicallySortNodesAndEdges(goal_node_id, NULL);
-}
-
-void Hypergraph::RemoveNoncoaccessibleStates(int goal_node_id) {
- if (goal_node_id < 0) goal_node_id += nodes_.size();
- assert(goal_node_id >= 0);
- assert(goal_node_id < nodes_.size());
-
- // TODO finish implementation
- abort();
-}
-
-void Hypergraph::TopologicallySortNodesAndEdges(int goal_index,
- const vector<bool>* prune_edges) {
- vector<Edge> sedges(edges_.size());
- // figure out which nodes are reachable from the goal
- vector<bool> reachable(nodes_.size(), false);
- int num_reachable = MarkReachable(nodes_[goal_index], &reachable, prune_edges);
- vector<Node> snodes(num_reachable); snodes.clear();
-
- // enumerate all reachable nodes in topologically sorted order
- vector<int> old_node_to_new_id(nodes_.size(), -1);
- vector<int> node_to_incount(nodes_.size(), -1);
- vector<bool> node_processed(nodes_.size(), false);
- typedef map<int, set<int> > PQueue;
- PQueue pri_q;
- for (int i = 0; i < nodes_.size(); ++i) {
- if (!reachable[i])
- continue;
- const int inedges = nodes_[i].in_edges_.size();
- int incount = inedges;
- for (int j = 0; j < inedges; ++j)
- if (edges_[nodes_[i].in_edges_[j]].tail_nodes_.size() == 0 ||
- (prune_edges && (*prune_edges)[nodes_[i].in_edges_[j]]))
- --incount;
- // cerr << &nodes_[i] <<" : incount=" << incount << "\tout=" << nodes_[i].out_edges_.size() << "\t(in-edges=" << inedges << ")\n";
- assert(node_to_incount[i] == -1);
- node_to_incount[i] = incount;
- pri_q[incount].insert(i);
- }
-
- int edge_count = 0;
- while (!pri_q.empty()) {
- PQueue::iterator iter = pri_q.find(0);
- assert(iter != pri_q.end());
- assert(!iter->second.empty());
-
- // get first node with incount = 0
- const int cur_index = *iter->second.begin();
- const Node& node = nodes_[cur_index];
- assert(reachable[cur_index]);
- //cerr << "node: " << node << endl;
- const int new_node_index = snodes.size();
- old_node_to_new_id[cur_index] = new_node_index;
- snodes.push_back(node);
- Node& new_node = snodes.back();
- new_node.id_ = new_node_index;
- new_node.out_edges_.clear();
-
- // fix up edges - we can now process the in edges and
- // the out edges of their tails
- int oi = 0;
- for (int i = 0; i < node.in_edges_.size(); ++i, ++oi) {
- if (prune_edges && (*prune_edges)[node.in_edges_[i]]) {
- --oi;
- continue;
- }
- new_node.in_edges_[oi] = edge_count;
- Edge& edge = sedges[edge_count];
- edge.id_ = edge_count;
- ++edge_count;
- const Edge& old_edge = edges_[node.in_edges_[i]];
- edge.rule_ = old_edge.rule_;
- edge.feature_values_ = old_edge.feature_values_;
- edge.head_node_ = new_node_index;
- edge.tail_nodes_.resize(old_edge.tail_nodes_.size());
- edge.edge_prob_ = old_edge.edge_prob_;
- edge.i_ = old_edge.i_;
- edge.j_ = old_edge.j_;
- edge.prev_i_ = old_edge.prev_i_;
- edge.prev_j_ = old_edge.prev_j_;
- for (int j = 0; j < old_edge.tail_nodes_.size(); ++j) {
- const Node& old_tail_node = nodes_[old_edge.tail_nodes_[j]];
- edge.tail_nodes_[j] = old_node_to_new_id[old_tail_node.id_];
- snodes[edge.tail_nodes_[j]].out_edges_.push_back(edge_count-1);
- assert(edge.tail_nodes_[j] != new_node_index);
- }
- }
- assert(oi <= new_node.in_edges_.size());
- new_node.in_edges_.resize(oi);
-
- for (int i = 0; i < node.out_edges_.size(); ++i) {
- const Edge& edge = edges_[node.out_edges_[i]];
- const int next_index = edge.head_node_;
- assert(cur_index != next_index);
- if (!reachable[next_index]) continue;
- if (prune_edges && (*prune_edges)[edge.id_]) continue;
-
- bool dontReduce = false;
- for (int j = 0; j < edge.tail_nodes_.size() && !dontReduce; ++j) {
- int tail_index = edge.tail_nodes_[j];
- dontReduce = (tail_index != cur_index) && !node_processed[tail_index];
- }
- if (dontReduce)
- continue;
-
- const int incount = node_to_incount[next_index];
- if (incount <= 0) {
- cerr << "incount = " << incount << ", should be > 0!\n";
- cerr << "do you have a cycle in your hypergraph?\n";
- abort();
- }
- PQueue::iterator it = pri_q.find(incount);
- assert(it != pri_q.end());
- it->second.erase(next_index);
- if (it->second.empty()) pri_q.erase(it);
-
- // reinsert node with reduced incount
- pri_q[incount-1].insert(next_index);
- --node_to_incount[next_index];
- }
-
- // remove node from set
- iter->second.erase(cur_index);
- if (iter->second.empty())
- pri_q.erase(iter);
- node_processed[cur_index] = true;
- }
-
- sedges.resize(edge_count);
- nodes_.swap(snodes);
- edges_.swap(sedges);
- assert(nodes_.back().out_edges_.size() == 0);
-}
-
-TRulePtr Hypergraph::kEPSRule;
-TRulePtr Hypergraph::kUnaryRule;
-
-void Hypergraph::EpsilonRemove(WordID eps) {
- if (!kEPSRule) {
- kEPSRule.reset(new TRule("[X] ||| <eps> ||| <eps>"));
- kUnaryRule.reset(new TRule("[X] ||| [X,1] ||| [X,1]"));
- }
- vector<bool> kill(edges_.size(), false);
- for (int i = 0; i < edges_.size(); ++i) {
- const Edge& edge = edges_[i];
- if (edge.tail_nodes_.empty() &&
- edge.rule_->f_.size() == 1 &&
- edge.rule_->f_[0] == eps) {
- kill[i] = true;
- if (!edge.feature_values_.empty()) {
- Node& node = nodes_[edge.head_node_];
- if (node.in_edges_.size() != 1) {
- cerr << "[WARNING] <eps> edge with features going into non-empty node - can't promote\n";
- // this *probably* means that there are multiple derivations of the
- // same sequence via different paths through the input forest
- // this needs to be investigated and fixed
- } else {
- for (int j = 0; j < node.out_edges_.size(); ++j)
- edges_[node.out_edges_[j]].feature_values_ += edge.feature_values_;
- // cerr << "PROMOTED " << edge.feature_values_ << endl;
- }
- }
- }
- }
- bool created_eps = false;
- PruneEdges(kill);
- for (int i = 0; i < nodes_.size(); ++i) {
- const Node& node = nodes_[i];
- if (node.in_edges_.empty()) {
- for (int j = 0; j < node.out_edges_.size(); ++j) {
- Edge& edge = edges_[node.out_edges_[j]];
- if (edge.rule_->Arity() == 2) {
- assert(edge.rule_->f_.size() == 2);
- assert(edge.rule_->e_.size() == 2);
- edge.rule_ = kUnaryRule;
- int cur = node.id_;
- int t = -1;
- assert(edge.tail_nodes_.size() == 2);
- for (int i = 0; i < 2; ++i) if (edge.tail_nodes_[i] != cur) { t = edge.tail_nodes_[i]; }
- assert(t != -1);
- edge.tail_nodes_.resize(1);
- edge.tail_nodes_[0] = t;
- } else {
- edge.rule_ = kEPSRule;
- edge.rule_->f_[0] = eps;
- edge.rule_->e_[0] = eps;
- edge.tail_nodes_.clear();
- created_eps = true;
- }
- }
- }
- }
- vector<bool> k2(edges_.size(), false);
- PruneEdges(k2);
- if (created_eps) EpsilonRemove(eps);
-}
-
-struct EdgeWeightSorter {
- const Hypergraph& hg;
- EdgeWeightSorter(const Hypergraph& h) : hg(h) {}
- bool operator()(int a, int b) const {
- return hg.edges_[a].edge_prob_ > hg.edges_[b].edge_prob_;
- }
-};
-
-void Hypergraph::SortInEdgesByEdgeWeights() {
- for (int i = 0; i < nodes_.size(); ++i) {
- Node& node = nodes_[i];
- sort(node.in_edges_.begin(), node.in_edges_.end(), EdgeWeightSorter(*this));
- }
-}
-