diff options
Diffstat (limited to 'python/cdec')
-rw-r--r-- | python/cdec/__init__.py | 1 | ||||
-rw-r--r-- | python/cdec/scfg/__init__.py | 1 | ||||
-rw-r--r-- | python/cdec/scfg/extractor.py | 112 | ||||
-rw-r--r-- | python/cdec/scfg/features.py | 62 |
4 files changed, 0 insertions, 176 deletions
diff --git a/python/cdec/__init__.py b/python/cdec/__init__.py deleted file mode 100644 index c821f860..00000000 --- a/python/cdec/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from _cdec import Decoder, Hypergraph, Lattice diff --git a/python/cdec/scfg/__init__.py b/python/cdec/scfg/__init__.py deleted file mode 100644 index 6eb2f88f..00000000 --- a/python/cdec/scfg/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from extractor import GrammarExtractor diff --git a/python/cdec/scfg/extractor.py b/python/cdec/scfg/extractor.py deleted file mode 100644 index 9f1e1137..00000000 --- a/python/cdec/scfg/extractor.py +++ /dev/null @@ -1,112 +0,0 @@ -#!/usr/bin/env python -import StringIO - -import clex -import rulefactory -import calignment -import csuf -import cdat -import sym -import log - -log.level = -1 - -from features import EgivenFCoherent, SampleCountF, CountEF,\ - MaxLexEgivenF, MaxLexFgivenE, IsSingletonF, IsSingletonFE -from features import contextless - -class Output(StringIO.StringIO): - def close(self): - pass - - def __str__(self): - return self.getvalue() - -from itertools import chain - -def get_cn(sentence): - sentence = chain(('<s>',), sentence.split(), ('</s>',)) - sentence = (sym.fromstring(word, terminal=True) for word in sentence) - return tuple(((word, None, 1), ) for word in sentence) - -class PhonyGrammar: - def add(self, thing): - pass - -class GrammarExtractor: - def __init__(self, config): - alignment = calignment.Alignment(config['a_file'], from_binary=True) - self.factory = rulefactory.HieroCachingRuleFactory( - # compiled alignment object (REQUIRED) - alignment=alignment, - # name of generic nonterminal used by Hiero - category="[X]", - # do not change for extraction - grammar=PhonyGrammar(), # TODO: set to None? - # maximum number of contiguous chunks of terminal symbols in RHS of a rule. If None, defaults to max_nonterminals+1 - max_chunks=None, - # maximum span of a grammar rule in TEST DATA - max_initial_size=15, - # maximum number of symbols (both T and NT) allowed in a rule - max_length=config['max_len'], - # maximum number of nonterminals allowed in a rule (set >2 at your own risk) - max_nonterminals=config['max_nt'], - # maximum number of contiguous chunks of terminal symbols in target-side RHS of a rule. If None, defaults to max_nonterminals+1 - max_target_chunks=None, - # maximum number of target side symbols (both T and NT) allowed in a rule. If None, defaults to max_initial_size - max_target_length=None, - # minimum span of a nonterminal in the RHS of a rule in TEST DATA - min_gap_size=1, - # filename of file containing precomputed collocations - precompute_file=config['precompute_file'], - # maximum frequency rank of patterns used to compute triples (don't set higher than 20). - precompute_secondary_rank=config['rank2'], - # maximum frequency rank of patterns used to compute collocations (no need to set higher than maybe 200-300) - precompute_rank=config['rank1'], - # require extracted rules to have at least one aligned word - require_aligned_terminal=True, - # require each contiguous chunk of extracted rules to have at least one aligned word - require_aligned_chunks=False, - # generate a complete grammar for each input sentence - per_sentence_grammar=True, - # maximum span of a grammar rule extracted from TRAINING DATA - train_max_initial_size=config['max_size'], - # minimum span of an RHS nonterminal in a rule extracted from TRAINING DATA - train_min_gap_size=config['min_gap'], - # True if phrases should be tight, False otherwise (False seems to give better results but is slower) - tight_phrases=True, - ) - self.fsarray = csuf.SuffixArray(config['f_sa_file'], from_binary=True) - self.edarray = cdat.DataArray(config['e_file'], from_binary=True) - - self.factory.registerContext(self) - - # lower=faster, higher=better; improvements level off above 200-300 range, -1 = don't sample, use all data (VERY SLOW!) - self.sampler = rulefactory.Sampler(300) - self.sampler.registerContext(self) - - # lexical weighting tables - tt = clex.CLex(config['lex_file'], from_binary=True) - - self.models = (EgivenFCoherent, SampleCountF, CountEF, - MaxLexFgivenE(tt), MaxLexEgivenF(tt), IsSingletonF, IsSingletonFE) - self.models = tuple(contextless(feature) for feature in self.models) - - def grammar(self, sentence): - out = Output() - cn = get_cn(sentence) - self.factory.input_file(cn, out) - return str(out) - -def main(config): - sys.path.append(os.path.dirname(config)) - module = __import__(os.path.basename(config).replace('.py', '')) - extractor = GrammarExtractor(module.__dict__) - print extractor.grammar(next(sys.stdin)) - -if __name__ == '__main__': - import sys, os - if len(sys.argv) != 2 or not sys.argv[1].endswith('.py'): - sys.stderr.write('Usage: %s config.py\n' % sys.argv[0]) - sys.exit(1) - main(*sys.argv[1:]) diff --git a/python/cdec/scfg/features.py b/python/cdec/scfg/features.py deleted file mode 100644 index 6419cdd8..00000000 --- a/python/cdec/scfg/features.py +++ /dev/null @@ -1,62 +0,0 @@ -from __future__ import division -import math -import sym - -def contextless(feature): - feature.compute_contextless_score = feature - return feature - -MAXSCORE = 99 - -def EgivenF(fphrase, ephrase, paircount, fcount, fsample_count): # p(e|f) - return -math.log10(paircount/fcount) - -def CountEF(fphrase, ephrase, paircount, fcount, fsample_count): - return math.log10(1 + paircount) - -def SampleCountF(fphrase, ephrase, paircount, fcount, fsample_count): - return math.log10(1 + fsample_count) - -def EgivenFCoherent(fphrase, ephrase, paircount, fcount, fsample_count): - prob = paircount/fsample_count - return -math.log10(prob) if prob > 0 else MAXSCORE - -def CoherenceProb(fphrase, ephrase, paircount, fcount, fsample_count): - return -math.log10(fcount/fsample_count) - -def MaxLexEgivenF(ttable): - def feature(fphrase, ephrase, paircount, fcount, fsample_count): - fwords = [sym.tostring(w) for w in fphrase if not sym.isvar(w)] + ['NULL'] - ewords = (sym.tostring(w) for w in ephrase if not sym.isvar(w)) - def score(): - for e in ewords: - maxScore = max(ttable.get_score(f, e, 0) for f in fwords) - yield -math.log10(maxScore) if maxScore > 0 else MAXSCORE - return sum(score()) - return feature - -def MaxLexFgivenE(ttable): - def feature(fphrase, ephrase, paircount, fcount, fsample_count): - fwords = (sym.tostring(w) for w in fphrase if not sym.isvar(w)) - ewords = [sym.tostring(w) for w in ephrase if not sym.isvar(w)] + ['NULL'] - def score(): - for f in fwords: - maxScore = max(ttable.get_score(f, e, 1) for e in ewords) - yield -math.log10(maxScore) if maxScore > 0 else MAXSCORE - return sum(score()) - return feature - -def IsSingletonF(fphrase, ephrase, paircount, fcount, fsample_count): - return (fcount == 1) - -def IsSingletonFE(fphrase, ephrase, paircount, fcount, fsample_count): - return (paircount == 1) - -def IsNotSingletonF(fphrase, ephrase, paircount, fcount, fsample_count): - return (fcount > 1) - -def IsNotSingletonFE(fphrase, ephrase, paircount, fcount, fsample_count): - return (paircount > 1) - -def IsFEGreaterThanZero(fphrase, ephrase, paircount, fcount, fsample_count): - return (paircount > 0.01) |