diff options
Diffstat (limited to 'python/cdec/sa')
-rw-r--r-- | python/cdec/sa/__init__.py | 4 | ||||
-rw-r--r-- | python/cdec/sa/compile.py | 94 | ||||
-rw-r--r-- | python/cdec/sa/extract.py | 32 | ||||
-rw-r--r-- | python/cdec/sa/extractor.py | 73 | ||||
-rw-r--r-- | python/cdec/sa/features.py | 60 |
5 files changed, 263 insertions, 0 deletions
diff --git a/python/cdec/sa/__init__.py b/python/cdec/sa/__init__.py new file mode 100644 index 00000000..ddefa280 --- /dev/null +++ b/python/cdec/sa/__init__.py @@ -0,0 +1,4 @@ +from _cdec_sa import sym_tostring, sym_isvar, sym_fromstring,\ + SuffixArray, DataArray, LCP, Precomputation, Alignment, BiLex,\ + HieroCachingRuleFactory, Sampler +from extractor import GrammarExtractor diff --git a/python/cdec/sa/compile.py b/python/cdec/sa/compile.py new file mode 100644 index 00000000..061cdab2 --- /dev/null +++ b/python/cdec/sa/compile.py @@ -0,0 +1,94 @@ +#!/usr/bin/env python +import argparse +import os +import logging +import configobj +import cdec.sa + +MAX_PHRASE_LENGTH = 4 +def precompute(f_sa, max_len, max_nt, max_size, min_gap, rank1, rank2): + lcp = cdec.sa.LCP(f_sa) + stats = sorted(lcp.compute_stats(MAX_PHRASE_LENGTH), reverse=True) + precomp = cdec.sa.Precomputation(from_stats=stats, + fsarray=f_sa, + precompute_rank=rank1, + precompute_secondary_rank=rank2, + max_length=max_len, + max_nonterminals=max_nt, + train_max_initial_size=max_size, + train_min_gap_size=min_gap) + return precomp + +def main(): + logging.basicConfig(level=logging.INFO) + logger = logging.getLogger('cdec.sa.compile') + parser = argparse.ArgumentParser(description='Compile a corpus into a suffix array.') + parser.add_argument('--maxnt', '-n', type=int, default=2, + help='Maximum number of non-terminal symbols') + parser.add_argument('--maxlen', '-l', type=int, default=5, + help='Maximum number of terminals') + parser.add_argument('--maxsize', '-s', type=int, default=15, + help='Maximum rule span') + parser.add_argument('--mingap', '-g', type=int, default=1, + help='Minimum gap size') + parser.add_argument('--rank1', '-r1', type=int, default=100, + help='Number of pre-computed frequent patterns') + parser.add_argument('--rank2', '-r2', type=int, default=10, + help='Number of pre-computed super-frequent patterns)') + parser.add_argument('-c', '--config', default='/dev/stdout', + help='Output configuration') + parser.add_argument('-o', '--output', required=True, + help='Output path') + parser.add_argument('-f', '--source', required=True, + help='Source language corpus') + parser.add_argument('-e', '--target', required=True, + help='Target language corpus') + parser.add_argument('-a', '--alignment', required=True, + help='Bitext word alignment') + args = parser.parse_args() + + param_names = ("max_len", "max_nt", "max_size", "min_gap", "rank1", "rank2") + params = (args.maxlen, args.maxnt, args.maxsize, args.mingap, args.rank1, args.rank2) + + if not os.path.exists(args.output): + os.mkdir(args.output) + + f_sa_bin = os.path.join(args.output, 'f.sa.bin') + e_bin = os.path.join(args.output, 'e.bin') + precomp_file = 'precomp.{0}.{1}.{2}.{3}.{4}.{5}.bin'.format(*params) + precomp_bin = os.path.join(args.output, precomp_file) + a_bin = os.path.join(args.output, 'a.bin') + lex_bin = os.path.join(args.output, 'lex.bin') + + logger.info('Compiling source suffix array') + f_sa = cdec.sa.SuffixArray(from_text=args.source) + f_sa.write_binary(f_sa_bin) + + logger.info('Compiling target data array') + e = cdec.sa.DataArray(from_text=args.target) + e.write_binary(e_bin) + + logger.info('Precomputing frequent phrases') + precompute(f_sa, *params).write_binary(precomp_bin) + + logger.info('Compiling alignment') + a = cdec.sa.Alignment(from_text=args.alignment) + a.write_binary(a_bin) + + logger.info('Compiling bilexical dictionary') + lex = cdec.sa.BiLex(from_data=True, alignment=a, earray=e, fsarray=f_sa) + lex.write_binary(lex_bin) + + # Write configuration + config = configobj.ConfigObj(args.config, unrepr=True) + config['f_sa_file'] = f_sa_bin + config['e_file'] = e_bin + config['a_file'] = a_bin + config['lex_file'] = lex_bin + config['precompute_file'] = precomp_bin + for name, value in zip(param_names, params): + config[name] = value + config.write() + +if __name__ == '__main__': + main() diff --git a/python/cdec/sa/extract.py b/python/cdec/sa/extract.py new file mode 100644 index 00000000..c6da5e9d --- /dev/null +++ b/python/cdec/sa/extract.py @@ -0,0 +1,32 @@ +#!/usr/bin/env python +import sys +import os +import argparse +import logging +import configobj +import cdec.sa + +def main(): + logging.basicConfig(level=logging.INFO) + parser = argparse.ArgumentParser(description='Extract grammars from a compiled corpus.') + parser.add_argument('-c', '--config', required=True, + help='Extractor configuration') + parser.add_argument('-g', '--grammars', required=True, + help='Grammar output path') + args = parser.parse_args() + + if not os.path.exists(args.grammars): + os.mkdir(args.grammars) + + extractor = cdec.sa.GrammarExtractor(configobj.ConfigObj(args.config, unrepr=True)) + for i, sentence in enumerate(sys.stdin): + sentence = sentence[:-1] + grammar_file = os.path.join(args.grammars, 'grammar.{0}'.format(i)) + with open(grammar_file, 'w') as output: + for rule in extractor.grammar(sentence): + output.write(str(rule)+'\n') + grammar_file = os.path.abspath(grammar_file) + print('<seg grammar="{0}">{1}</seg>'.format(grammar_file, sentence)) + +if __name__ == '__main__': + main() diff --git a/python/cdec/sa/extractor.py b/python/cdec/sa/extractor.py new file mode 100644 index 00000000..c97b3c6f --- /dev/null +++ b/python/cdec/sa/extractor.py @@ -0,0 +1,73 @@ +from itertools import chain +from cdec.sa.features import EgivenFCoherent, SampleCountF, CountEF,\ + MaxLexEgivenF, MaxLexFgivenE, IsSingletonF, IsSingletonFE +import cdec.sa + +# maximum span of a grammar rule in TEST DATA +MAX_INITIAL_SIZE = 15 + +class GrammarExtractor: + def __init__(self, config): + # TODO if str, read config + alignment = cdec.sa.Alignment(from_binary=config['a_file']) + self.factory = cdec.sa.HieroCachingRuleFactory( + # compiled alignment object (REQUIRED) + alignment, + # name of generic nonterminal used by Hiero + category="[X]", + # maximum number of contiguous chunks of terminal symbols in RHS of a rule + max_chunks=config['max_nt']+1, + # maximum span of a grammar rule in TEST DATA + max_initial_size=MAX_INITIAL_SIZE, + # maximum number of symbols (both T and NT) allowed in a rule + max_length=config['max_len'], + # maximum number of nonterminals allowed in a rule (set >2 at your own risk) + max_nonterminals=config['max_nt'], + # maximum number of contiguous chunks of terminal symbols + # in target-side RHS of a rule. + max_target_chunks=config['max_nt']+1, + # maximum number of target side symbols (both T and NT) allowed in a rule. + max_target_length=MAX_INITIAL_SIZE, + # minimum span of a nonterminal in the RHS of a rule in TEST DATA + min_gap_size=1, + # filename of file containing precomputed collocations + precompute_file=config['precompute_file'], + # maximum frequency rank of patterns used to compute triples (< 20) + precompute_secondary_rank=config['rank2'], + # maximum frequency rank of patterns used to compute collocations (< 300) + precompute_rank=config['rank1'], + # require extracted rules to have at least one aligned word + require_aligned_terminal=True, + # require each contiguous chunk of extracted rules + # to have at least one aligned word + require_aligned_chunks=False, + # maximum span of a grammar rule extracted from TRAINING DATA + train_max_initial_size=config['max_size'], + # minimum span of an RHS nonterminal in a rule extracted from TRAINING DATA + train_min_gap_size=config['min_gap'], + # True if phrases should be tight, False otherwise (better but slower) + tight_phrases=True, + ) + + # lexical weighting tables + tt = cdec.sa.BiLex(from_binary=config['lex_file']) + + self.models = (EgivenFCoherent, SampleCountF, CountEF, + MaxLexFgivenE(tt), MaxLexEgivenF(tt), IsSingletonF, IsSingletonFE) + + fsarray = cdec.sa.SuffixArray(from_binary=config['f_sa_file']) + edarray = cdec.sa.DataArray(from_binary=config['e_file']) + + # lower=faster, higher=better; improvements level off above 200-300 range, + # -1 = don't sample, use all data (VERY SLOW!) + sampler = cdec.sa.Sampler(300, fsarray) + + self.factory.configure(fsarray, edarray, sampler) + + def grammar(self, sentence): + if isinstance(sentence, unicode): + sentence = sentence.encode('utf8') + cnet = chain(('<s>',), sentence.split(), ('</s>',)) + cnet = (cdec.sa.sym_fromstring(word, terminal=True) for word in cnet) + cnet = tuple(((word, None, 1), ) for word in cnet) + return self.factory.input(cnet, self.models) diff --git a/python/cdec/sa/features.py b/python/cdec/sa/features.py new file mode 100644 index 00000000..8d35d8e6 --- /dev/null +++ b/python/cdec/sa/features.py @@ -0,0 +1,60 @@ +from __future__ import division +import math +import cdec.sa + +MAXSCORE = 99 + +def EgivenF(fphrase, ephrase, paircount, fcount, fsample_count): # p(e|f) + return -math.log10(paircount/fcount) + +def CountEF(fphrase, ephrase, paircount, fcount, fsample_count): + return math.log10(1 + paircount) + +def SampleCountF(fphrase, ephrase, paircount, fcount, fsample_count): + return math.log10(1 + fsample_count) + +def EgivenFCoherent(fphrase, ephrase, paircount, fcount, fsample_count): + prob = paircount/fsample_count + return -math.log10(prob) if prob > 0 else MAXSCORE + +def CoherenceProb(fphrase, ephrase, paircount, fcount, fsample_count): + return -math.log10(fcount/fsample_count) + +def MaxLexEgivenF(ttable): + def feature(fphrase, ephrase, paircount, fcount, fsample_count): + fwords = [cdec.sa.sym_tostring(w) for w in fphrase if not cdec.sa.sym_isvar(w)] + fwords.append('NULL') + ewords = (cdec.sa.sym_tostring(w) for w in ephrase if not cdec.sa.sym_isvar(w)) + def score(): + for e in ewords: + maxScore = max(ttable.get_score(f, e, 0) for f in fwords) + yield -math.log10(maxScore) if maxScore > 0 else MAXSCORE + return sum(score()) + return feature + +def MaxLexFgivenE(ttable): + def feature(fphrase, ephrase, paircount, fcount, fsample_count): + fwords = (cdec.sa.sym_tostring(w) for w in fphrase if not cdec.sa.sym_isvar(w)) + ewords = [cdec.sa.sym_tostring(w) for w in ephrase if not cdec.sa.sym_isvar(w)] + ewords.append('NULL') + def score(): + for f in fwords: + maxScore = max(ttable.get_score(f, e, 1) for e in ewords) + yield -math.log10(maxScore) if maxScore > 0 else MAXSCORE + return sum(score()) + return feature + +def IsSingletonF(fphrase, ephrase, paircount, fcount, fsample_count): + return (fcount == 1) + +def IsSingletonFE(fphrase, ephrase, paircount, fcount, fsample_count): + return (paircount == 1) + +def IsNotSingletonF(fphrase, ephrase, paircount, fcount, fsample_count): + return (fcount > 1) + +def IsNotSingletonFE(fphrase, ephrase, paircount, fcount, fsample_count): + return (paircount > 1) + +def IsFEGreaterThanZero(fphrase, ephrase, paircount, fcount, fsample_count): + return (paircount > 0.01) |