summaryrefslogtreecommitdiff
path: root/mteval/mbr_kbest.cc
diff options
context:
space:
mode:
Diffstat (limited to 'mteval/mbr_kbest.cc')
-rw-r--r--mteval/mbr_kbest.cc138
1 files changed, 138 insertions, 0 deletions
diff --git a/mteval/mbr_kbest.cc b/mteval/mbr_kbest.cc
new file mode 100644
index 00000000..2867b36b
--- /dev/null
+++ b/mteval/mbr_kbest.cc
@@ -0,0 +1,138 @@
+#include <iostream>
+#include <vector>
+
+#include <boost/program_options.hpp>
+
+#include "prob.h"
+#include "tdict.h"
+#include "scorer.h"
+#include "filelib.h"
+#include "stringlib.h"
+
+using namespace std;
+
+namespace po = boost::program_options;
+
+void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
+ po::options_description opts("Configuration options");
+ opts.add_options()
+ ("scale,a",po::value<double>()->default_value(1.0), "Posterior scaling factor (alpha)")
+ ("loss_function,l",po::value<string>()->default_value("bleu"), "Loss function")
+ ("input,i",po::value<string>()->default_value("-"), "File to read k-best lists from")
+ ("output_list,L", "Show reranked list as output")
+ ("help,h", "Help");
+ po::options_description dcmdline_options;
+ dcmdline_options.add(opts);
+ po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
+ bool flag = false;
+ if (flag || conf->count("help")) {
+ cerr << dcmdline_options << endl;
+ exit(1);
+ }
+}
+
+struct LossComparer {
+ bool operator()(const pair<vector<WordID>, double>& a, const pair<vector<WordID>, double>& b) const {
+ return a.second < b.second;
+ }
+};
+
+bool ReadKBestList(istream* in, string* sent_id, vector<pair<vector<WordID>, prob_t> >* list) {
+ static string cache_id;
+ static pair<vector<WordID>, prob_t> cache_pair;
+ list->clear();
+ string cur_id;
+ if (cache_pair.first.size() > 0) {
+ list->push_back(cache_pair);
+ cur_id = cache_id;
+ cache_pair.first.clear();
+ }
+ string line;
+ string tstr;
+ while(*in) {
+ getline(*in, line);
+ if (line.empty()) continue;
+ size_t p1 = line.find(" ||| ");
+ if (p1 == string::npos) { cerr << "Bad format: " << line << endl; abort(); }
+ size_t p2 = line.find(" ||| ", p1 + 4);
+ if (p2 == string::npos) { cerr << "Bad format: " << line << endl; abort(); }
+ size_t p3 = line.rfind(" ||| ");
+ cache_id = line.substr(0, p1);
+ tstr = line.substr(p1 + 5, p2 - p1 - 5);
+ double val = strtod(line.substr(p3 + 5).c_str(), NULL);
+ TD::ConvertSentence(tstr, &cache_pair.first);
+ cache_pair.second.logeq(val);
+ if (cur_id.empty()) cur_id = cache_id;
+ if (cur_id == cache_id) {
+ list->push_back(cache_pair);
+ *sent_id = cur_id;
+ cache_pair.first.clear();
+ } else { break; }
+ }
+ return !list->empty();
+}
+
+int main(int argc, char** argv) {
+ po::variables_map conf;
+ InitCommandLine(argc, argv, &conf);
+ const string metric = conf["loss_function"].as<string>();
+ const bool output_list = conf.count("output_list") > 0;
+ const string file = conf["input"].as<string>();
+ const double mbr_scale = conf["scale"].as<double>();
+ cerr << "Posterior scaling factor (alpha) = " << mbr_scale << endl;
+
+ ScoreType type = ScoreTypeFromString(metric);
+ vector<pair<vector<WordID>, prob_t> > list;
+ ReadFile rf(file);
+ string sent_id;
+ while(ReadKBestList(rf.stream(), &sent_id, &list)) {
+ vector<prob_t> joints(list.size());
+ const prob_t max_score = pow(list.front().second, mbr_scale);
+ prob_t marginal = prob_t::Zero();
+ for (int i = 0 ; i < list.size(); ++i) {
+ const prob_t joint = pow(list[i].second, mbr_scale) / max_score;
+ joints[i] = joint;
+ // cerr << "list[" << i << "] joint=" << log(joint) << endl;
+ marginal += joint;
+ }
+ int mbr_idx = -1;
+ vector<double> mbr_scores(output_list ? list.size() : 0);
+ double mbr_loss = numeric_limits<double>::max();
+ for (int i = 0 ; i < list.size(); ++i) {
+ vector<vector<WordID> > refs(1, list[i].first);
+ //cerr << i << ": " << list[i].second <<"\t" << TD::GetString(list[i].first) << endl;
+ ScorerP scorer = SentenceScorer::CreateSentenceScorer(type, refs);
+ double wl_acc = 0;
+ for (int j = 0; j < list.size(); ++j) {
+ if (i != j) {
+ ScoreP s = scorer->ScoreCandidate(list[j].first);
+ double loss = 1.0 - s->ComputeScore();
+ if (type == TER || type == AER) loss = 1.0 - loss;
+ double weighted_loss = loss * (joints[j] / marginal);
+ wl_acc += weighted_loss;
+ if ((!output_list) && wl_acc > mbr_loss) break;
+ }
+ }
+ if (output_list) mbr_scores[i] = wl_acc;
+ if (wl_acc < mbr_loss) {
+ mbr_loss = wl_acc;
+ mbr_idx = i;
+ }
+ }
+ // cerr << "ML translation: " << TD::GetString(list[0].first) << endl;
+ cerr << "MBR Best idx: " << mbr_idx << endl;
+ if (output_list) {
+ for (int i = 0; i < list.size(); ++i)
+ list[i].second.logeq(mbr_scores[i]);
+ sort(list.begin(), list.end(), LossComparer());
+ for (int i = 0; i < list.size(); ++i)
+ cout << sent_id << " ||| "
+ << TD::GetString(list[i].first) << " ||| "
+ << log(list[i].second) << endl;
+ } else {
+ cout << TD::GetString(list[mbr_idx].first) << endl;
+ }
+ }
+ return 0;
+}
+