diff options
Diffstat (limited to 'mira')
| -rw-r--r-- | mira/Makefile.am | 6 | ||||
| -rw-r--r-- | mira/kbest_mira.cc | 309 | 
2 files changed, 0 insertions, 315 deletions
| diff --git a/mira/Makefile.am b/mira/Makefile.am deleted file mode 100644 index 3f8f17cd..00000000 --- a/mira/Makefile.am +++ /dev/null @@ -1,6 +0,0 @@ -bin_PROGRAMS = kbest_mira - -kbest_mira_SOURCES = kbest_mira.cc -kbest_mira_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/klm/search/libksearch.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz - -AM_CPPFLAGS = -W -Wall -Wno-sign-compare -I$(top_srcdir)/utils -I$(top_srcdir)/decoder -I$(top_srcdir)/mteval diff --git a/mira/kbest_mira.cc b/mira/kbest_mira.cc deleted file mode 100644 index 8b7993dd..00000000 --- a/mira/kbest_mira.cc +++ /dev/null @@ -1,309 +0,0 @@ -#include <sstream> -#include <iostream> -#include <vector> -#include <cassert> -#include <cmath> -#include <tr1/memory> - -#include <boost/program_options.hpp> -#include <boost/program_options/variables_map.hpp> - -#include "hg_sampler.h" -#include "sentence_metadata.h" -#include "scorer.h" -#include "verbose.h" -#include "viterbi.h" -#include "hg.h" -#include "prob.h" -#include "kbest.h" -#include "ff_register.h" -#include "decoder.h" -#include "filelib.h" -#include "fdict.h" -#include "weights.h" -#include "sparse_vector.h" -#include "sampler.h" - -using namespace std; -namespace po = boost::program_options; - -bool invert_score; -std::tr1::shared_ptr<MT19937> rng; - -void RandomPermutation(int len, vector<int>* p_ids) { -  vector<int>& ids = *p_ids; -  ids.resize(len); -  for (int i = 0; i < len; ++i) ids[i] = i; -  for (int i = len; i > 0; --i) { -    int j = rng->next() * i; -    if (j == i) i--; -    swap(ids[i-1], ids[j]); -  }   -} - -bool InitCommandLine(int argc, char** argv, po::variables_map* conf) { -  po::options_description opts("Configuration options"); -  opts.add_options() -        ("input_weights,w",po::value<string>(),"Input feature weights file") -        ("source,i",po::value<string>(),"Source file for development set") -        ("passes,p", po::value<int>()->default_value(15), "Number of passes through the training data") -        ("reference,r",po::value<vector<string> >(), "[REQD] Reference translation(s) (tokenized text file)") -        ("mt_metric,m",po::value<string>()->default_value("ibm_bleu"), "Scoring metric (ibm_bleu, nist_bleu, koehn_bleu, ter, combi)") -        ("max_step_size,C", po::value<double>()->default_value(0.01), "regularization strength (C)") -        ("mt_metric_scale,s", po::value<double>()->default_value(1.0), "Amount to scale MT loss function by") -        ("k_best_size,k", po::value<int>()->default_value(250), "Size of hypothesis list to search for oracles") -        ("sample_forest,f", "Instead of a k-best list, sample k hypotheses from the decoder's forest") -        ("sample_forest_unit_weight_vector,x", "Before sampling (must use -f option), rescale the weight vector used so it has unit length; this may improve the quality of the samples") -        ("random_seed,S", po::value<uint32_t>(), "Random seed (if not specified, /dev/random will be used)") -        ("decoder_config,c",po::value<string>(),"Decoder configuration file"); -  po::options_description clo("Command line options"); -  clo.add_options() -        ("config", po::value<string>(), "Configuration file") -        ("help,h", "Print this help message and exit"); -  po::options_description dconfig_options, dcmdline_options; -  dconfig_options.add(opts); -  dcmdline_options.add(opts).add(clo); -   -  po::store(parse_command_line(argc, argv, dcmdline_options), *conf); -  if (conf->count("config")) { -    ifstream config((*conf)["config"].as<string>().c_str()); -    po::store(po::parse_config_file(config, dconfig_options), *conf); -  } -  po::notify(*conf); - -  if (conf->count("help") || !conf->count("input_weights") || !conf->count("source") || !conf->count("decoder_config") || !conf->count("reference")) { -    cerr << dcmdline_options << endl; -    return false; -  } -  return true; -} - -static const double kMINUS_EPSILON = -1e-6; - -struct HypothesisInfo { -  SparseVector<double> features; -  double mt_metric; -}; - -struct GoodBadOracle { -  std::tr1::shared_ptr<HypothesisInfo> good; -  std::tr1::shared_ptr<HypothesisInfo> bad; -}; - -struct TrainingObserver : public DecoderObserver { -  TrainingObserver(const int k, const DocScorer& d, bool sf, vector<GoodBadOracle>* o) : ds(d), oracles(*o), kbest_size(k), sample_forest(sf) {} -  const DocScorer& ds; -  vector<GoodBadOracle>& oracles; -  std::tr1::shared_ptr<HypothesisInfo> cur_best; -  const int kbest_size; -  const bool sample_forest; - -  const HypothesisInfo& GetCurrentBestHypothesis() const { -    return *cur_best; -  } - -  virtual void NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg) { -    UpdateOracles(smeta.GetSentenceID(), *hg); -  } - -  std::tr1::shared_ptr<HypothesisInfo> MakeHypothesisInfo(const SparseVector<double>& feats, const double score) { -    std::tr1::shared_ptr<HypothesisInfo> h(new HypothesisInfo); -    h->features = feats; -    h->mt_metric = score; -    return h; -  } - -  void UpdateOracles(int sent_id, const Hypergraph& forest) { -    std::tr1::shared_ptr<HypothesisInfo>& cur_good = oracles[sent_id].good; -    std::tr1::shared_ptr<HypothesisInfo>& cur_bad = oracles[sent_id].bad; -    cur_bad.reset();  // TODO get rid of?? - -    if (sample_forest) { -      vector<WordID> cur_prediction; -      ViterbiESentence(forest, &cur_prediction); -      float sentscore = ds[sent_id]->ScoreCandidate(cur_prediction)->ComputeScore(); -      cur_best = MakeHypothesisInfo(ViterbiFeatures(forest), sentscore); - -      vector<HypergraphSampler::Hypothesis> samples; -      HypergraphSampler::sample_hypotheses(forest, kbest_size, &*rng, &samples); -      for (unsigned i = 0; i < samples.size(); ++i) { -        sentscore = ds[sent_id]->ScoreCandidate(samples[i].words)->ComputeScore(); -        if (invert_score) sentscore *= -1.0; -        if (!cur_good || sentscore > cur_good->mt_metric) -          cur_good = MakeHypothesisInfo(samples[i].fmap, sentscore); -        if (!cur_bad || sentscore < cur_bad->mt_metric) -          cur_bad = MakeHypothesisInfo(samples[i].fmap, sentscore); -      } -    } else { -      KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(forest, kbest_size); -      for (int i = 0; i < kbest_size; ++i) { -        const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d = -          kbest.LazyKthBest(forest.nodes_.size() - 1, i); -        if (!d) break; -        float sentscore = ds[sent_id]->ScoreCandidate(d->yield)->ComputeScore(); -        if (invert_score) sentscore *= -1.0; -        // cerr << TD::GetString(d->yield) << " ||| " << d->score << " ||| " << sentscore << endl; -        if (i == 0) -          cur_best = MakeHypothesisInfo(d->feature_values, sentscore); -        if (!cur_good || sentscore > cur_good->mt_metric) -          cur_good = MakeHypothesisInfo(d->feature_values, sentscore); -        if (!cur_bad || sentscore < cur_bad->mt_metric) -          cur_bad = MakeHypothesisInfo(d->feature_values, sentscore); -      } -      //cerr << "GOOD: " << cur_good->mt_metric << endl; -      //cerr << " CUR: " << cur_best->mt_metric << endl; -      //cerr << " BAD: " << cur_bad->mt_metric << endl; -    } -  } -}; - -void ReadTrainingCorpus(const string& fname, vector<string>* c) { -  ReadFile rf(fname); -  istream& in = *rf.stream(); -  string line; -  while(in) { -    getline(in, line); -    if (!in) break; -    c->push_back(line); -  } -} - -bool ApproxEqual(double a, double b) { -  if (a == b) return true; -  return (fabs(a-b)/fabs(b)) < 0.000001; -} - -int main(int argc, char** argv) { -  register_feature_functions(); -  SetSilent(true);  // turn off verbose decoder output - -  po::variables_map conf; -  if (!InitCommandLine(argc, argv, &conf)) return 1; - -  if (conf.count("random_seed")) -    rng.reset(new MT19937(conf["random_seed"].as<uint32_t>())); -  else -    rng.reset(new MT19937); -  const bool sample_forest = conf.count("sample_forest") > 0; -  const bool sample_forest_unit_weight_vector = conf.count("sample_forest_unit_weight_vector") > 0; -  if (sample_forest_unit_weight_vector && !sample_forest) { -    cerr << "Cannot --sample_forest_unit_weight_vector without --sample_forest" << endl; -    return 1; -  } -  vector<string> corpus; -  ReadTrainingCorpus(conf["source"].as<string>(), &corpus); -  const string metric_name = conf["mt_metric"].as<string>(); -  ScoreType type = ScoreTypeFromString(metric_name); -  if (type == TER) { -    invert_score = true; -  } else { -    invert_score = false; -  } -  DocScorer ds(type, conf["reference"].as<vector<string> >(), ""); -  cerr << "Loaded " << ds.size() << " references for scoring with " << metric_name << endl; -  if (ds.size() != corpus.size()) { -    cerr << "Mismatched number of references (" << ds.size() << ") and sources (" << corpus.size() << ")\n"; -    return 1; -  } - -  ReadFile ini_rf(conf["decoder_config"].as<string>()); -  Decoder decoder(ini_rf.stream()); - -  // load initial weights -  vector<weight_t>& dense_weights = decoder.CurrentWeightVector(); -  SparseVector<weight_t> lambdas; -  Weights::InitFromFile(conf["input_weights"].as<string>(), &dense_weights); -  Weights::InitSparseVector(dense_weights, &lambdas); - -  const double max_step_size = conf["max_step_size"].as<double>(); -  const double mt_metric_scale = conf["mt_metric_scale"].as<double>(); - -  assert(corpus.size() > 0); -  vector<GoodBadOracle> oracles(corpus.size()); - -  TrainingObserver observer(conf["k_best_size"].as<int>(), ds, sample_forest, &oracles); -  int cur_sent = 0; -  int lcount = 0; -  int normalizer = 0; -  double tot_loss = 0; -  int dots = 0; -  int cur_pass = 0; -  SparseVector<double> tot; -  tot += lambdas;          // initial weights -  normalizer++;            // count for initial weights -  int max_iteration = conf["passes"].as<int>() * corpus.size(); -  string msg = "# MIRA tuned weights"; -  string msga = "# MIRA tuned weights AVERAGED"; -  vector<int> order; -  RandomPermutation(corpus.size(), &order); -  while (lcount <= max_iteration) { -    lambdas.init_vector(&dense_weights); -    if ((cur_sent * 40 / corpus.size()) > dots) { ++dots; cerr << '.'; } -    if (corpus.size() == cur_sent) { -      cerr << " [AVG METRIC LAST PASS=" << (tot_loss / corpus.size()) << "]\n"; -      Weights::ShowLargestFeatures(dense_weights); -      cur_sent = 0; -      tot_loss = 0; -      dots = 0; -      ostringstream os; -      os << "weights.mira-pass" << (cur_pass < 10 ? "0" : "") << cur_pass << ".gz"; -      SparseVector<double> x = tot; -      x /= normalizer; -      ostringstream sa; -      sa << "weights.mira-pass" << (cur_pass < 10 ? "0" : "") << cur_pass << "-avg.gz"; -      x.init_vector(&dense_weights); -      Weights::WriteToFile(os.str(), dense_weights, true, &msg); -      ++cur_pass; -      RandomPermutation(corpus.size(), &order); -    } -    if (cur_sent == 0) { -      cerr << "PASS " << (lcount / corpus.size() + 1) << endl; -    } -    decoder.SetId(order[cur_sent]); -    double sc = 1.0; -    if (sample_forest_unit_weight_vector) { -      sc = lambdas.l2norm(); -      if (sc > 0) { -        for (unsigned i = 0; i < dense_weights.size(); ++i) -          dense_weights[i] /= sc; -      } -    } -    decoder.Decode(corpus[order[cur_sent]], &observer);  // update oracles -    if (sc && sc != 1.0) { -      for (unsigned i = 0; i < dense_weights.size(); ++i) -        dense_weights[i] *= sc; -    } -    const HypothesisInfo& cur_hyp = observer.GetCurrentBestHypothesis(); -    const HypothesisInfo& cur_good = *oracles[order[cur_sent]].good; -    const HypothesisInfo& cur_bad = *oracles[order[cur_sent]].bad; -    tot_loss += cur_hyp.mt_metric; -    if (!ApproxEqual(cur_hyp.mt_metric, cur_good.mt_metric)) { -      const double loss = cur_bad.features.dot(dense_weights) - cur_good.features.dot(dense_weights) + -          mt_metric_scale * (cur_good.mt_metric - cur_bad.mt_metric); -      //cerr << "LOSS: " << loss << endl; -      if (loss > 0.0) { -        SparseVector<double> diff = cur_good.features; -        diff -= cur_bad.features; -        double step_size = loss / diff.l2norm_sq(); -        //cerr << loss << " " << step_size << " " << diff << endl; -        if (step_size > max_step_size) step_size = max_step_size; -        lambdas += (cur_good.features * step_size); -        lambdas -= (cur_bad.features * step_size); -        //cerr << "L: " << lambdas << endl; -      } -    } -    tot += lambdas; -    ++normalizer; -    ++lcount; -    ++cur_sent; -  } -  cerr << endl; -  Weights::WriteToFile("weights.mira-final.gz", dense_weights, true, &msg); -  tot /= normalizer; -  tot.init_vector(dense_weights); -  msg = "# MIRA tuned weights (averaged vector)"; -  Weights::WriteToFile("weights.mira-final-avg.gz", dense_weights, true, &msg); -  cerr << "Optimization complete.\nAVERAGED WEIGHTS: weights.mira-final-avg.gz\n"; -  return 0; -} - | 
