diff options
Diffstat (limited to 'mira')
-rw-r--r-- | mira/kbest_mira.cc | 76 |
1 files changed, 55 insertions, 21 deletions
diff --git a/mira/kbest_mira.cc b/mira/kbest_mira.cc index 7ff207a8..c0c39232 100644 --- a/mira/kbest_mira.cc +++ b/mira/kbest_mira.cc @@ -28,6 +28,8 @@ using namespace std; using boost::shared_ptr; namespace po = boost::program_options; +bool invert_score; + void SanityCheck(const vector<double>& w) { for (int i = 0; i < w.size(); ++i) { assert(!isnan(w[i])); @@ -62,10 +64,12 @@ bool InitCommandLine(int argc, char** argv, po::variables_map* conf) { opts.add_options() ("input_weights,w",po::value<string>(),"Input feature weights file") ("source,i",po::value<string>(),"Source file for development set") + ("passes,p", po::value<int>()->default_value(15), "Number of passes through the training data") ("reference,r",po::value<vector<string> >(), "[REQD] Reference translation(s) (tokenized text file)") - ("mt_metric,m",po::value<string>()->default_value("ter"), "Scoring metric (ibm_bleu, nist_bleu, koehn_bleu, ter, combi)") - ("max_step_size,C", po::value<double>()->default_value(0.0001), "maximum step size (C)") + ("mt_metric,m",po::value<string>()->default_value("ibm_bleu"), "Scoring metric (ibm_bleu, nist_bleu, koehn_bleu, ter, combi)") + ("max_step_size,C", po::value<double>()->default_value(0.001), "maximum step size (C)") ("mt_metric_scale,s", po::value<double>()->default_value(1.0), "Amount to scale MT loss function by") + ("k_best_size,k", po::value<int>()->default_value(250), "Size of hypothesis list to evaluate") ("decoder_config,c",po::value<string>(),"Decoder configuration file"); po::options_description clo("Command line options"); clo.add_options() @@ -102,10 +106,11 @@ struct GoodBadOracle { }; struct TrainingObserver : public DecoderObserver { - TrainingObserver(const DocScorer& d, vector<GoodBadOracle>* o) : ds(d), oracles(*o) {} + TrainingObserver(const int k, const DocScorer& d, vector<GoodBadOracle>* o) : ds(d), oracles(*o), kbest_size(k) {} const DocScorer& ds; vector<GoodBadOracle>& oracles; shared_ptr<HypothesisInfo> cur_best; + const int kbest_size; const HypothesisInfo& GetCurrentBestHypothesis() const { return *cur_best; @@ -123,7 +128,6 @@ struct TrainingObserver : public DecoderObserver { } void UpdateOracles(int sent_id, const Hypergraph& forest) { - int kbest_size = 330; shared_ptr<HypothesisInfo>& cur_good = oracles[sent_id].good; shared_ptr<HypothesisInfo>& cur_bad = oracles[sent_id].bad; cur_bad.reset(); // TODO get rid of?? @@ -133,17 +137,18 @@ struct TrainingObserver : public DecoderObserver { kbest.LazyKthBest(forest.nodes_.size() - 1, i); if (!d) break; float sentscore = ds[sent_id]->ScoreCandidate(d->yield)->ComputeScore(); -// cerr << TD::GetString(d->yield) << " ||| " << d->score << " ||| " << sentscore << endl; + if (invert_score) sentscore *= -1.0; + // cerr << TD::GetString(d->yield) << " ||| " << d->score << " ||| " << sentscore << endl; if (i == 0) cur_best = MakeHypothesisInfo(d->feature_values, sentscore); - if (!cur_good || sentscore < cur_good->mt_metric) + if (!cur_good || sentscore > cur_good->mt_metric) cur_good = MakeHypothesisInfo(d->feature_values, sentscore); - if (!cur_bad || sentscore > cur_bad->mt_metric) + if (!cur_bad || sentscore < cur_bad->mt_metric) cur_bad = MakeHypothesisInfo(d->feature_values, sentscore); } - cerr << "GOOD: " << cur_good->mt_metric << endl; - cerr << " BAD: " << cur_bad->mt_metric << endl; - cerr << " #1: " << cur_best->mt_metric << endl; + //cerr << "GOOD: " << cur_good->mt_metric << endl; + //cerr << " CUR: " << cur_best->mt_metric << endl; + //cerr << " BAD: " << cur_bad->mt_metric << endl; } }; @@ -165,7 +170,7 @@ bool ApproxEqual(double a, double b) { int main(int argc, char** argv) { register_feature_functions(); - //SetSilent(true); // turn off verbose decoder output + SetSilent(true); // turn off verbose decoder output po::variables_map conf; if (!InitCommandLine(argc, argv, &conf)) return 1; @@ -174,6 +179,11 @@ int main(int argc, char** argv) { ReadTrainingCorpus(conf["source"].as<string>(), &corpus); const string metric_name = conf["mt_metric"].as<string>(); ScoreType type = ScoreTypeFromString(metric_name); + if (type == TER) { + invert_score = true; + } else { + invert_score = false; + } DocScorer ds(type, conf["reference"].as<vector<string> >(), ""); cerr << "Loaded " << ds.size() << " references for scoring with " << metric_name << endl; if (ds.size() != corpus.size()) { @@ -186,10 +196,6 @@ int main(int argc, char** argv) { SparseVector<double> lambdas; weights.InitSparseVector(&lambdas); - // freeze feature set (should be optional?) - const bool freeze_feature_set = true; - if (freeze_feature_set) FD::Freeze(); - ReadFile ini_rf(conf["decoder_config"].as<string>()); Decoder decoder(ini_rf.stream()); const double max_step_size = conf["max_step_size"].as<double>(); @@ -198,25 +204,46 @@ int main(int argc, char** argv) { assert(corpus.size() > 0); vector<GoodBadOracle> oracles(corpus.size()); - TrainingObserver observer(ds, &oracles); + TrainingObserver observer(conf["k_best_size"].as<int>(), ds, &oracles); int cur_sent = 0; + int lcount = 0; + double tot_loss = 0; + int dots = 0; + int cur_pass = 0; bool converged = false; vector<double> dense_weights; - while (!converged) { + SparseVector<double> tot; + tot += lambdas; // initial weights + lcount++; // count for initial weights + int max_iteration = conf["passes"].as<int>() * corpus.size(); + string msg = "# MIRA tuned weights"; + while (lcount <= max_iteration) { dense_weights.clear(); weights.InitFromVector(lambdas); weights.InitVector(&dense_weights); decoder.SetWeights(dense_weights); - if (corpus.size() == cur_sent) cur_sent = 0; + if ((cur_sent * 40 / corpus.size()) > dots) { ++dots; cerr << '.'; } + if (corpus.size() == cur_sent) { + cur_sent = 0; + cerr << " [AVG METRIC LAST PASS=" << (tot_loss / corpus.size()) << "]\n"; + tot_loss = 0; + dots = 0; + ostringstream os; + os << "weights.mira-pass" << (cur_pass < 10 ? "0" : "") << cur_pass << ".gz"; + weights.WriteToFile(os.str(), true, &msg); + ++cur_pass; + } + if (cur_sent == 0) { cerr << "PASS " << (lcount / corpus.size() + 1) << endl << lambdas << endl; } decoder.SetId(cur_sent); decoder.Decode(corpus[cur_sent], &observer); // update oracles const HypothesisInfo& cur_hyp = observer.GetCurrentBestHypothesis(); const HypothesisInfo& cur_good = *oracles[cur_sent].good; const HypothesisInfo& cur_bad = *oracles[cur_sent].bad; + tot_loss += cur_hyp.mt_metric; if (!ApproxEqual(cur_hyp.mt_metric, cur_good.mt_metric)) { const double loss = cur_bad.features.dot(dense_weights) - cur_good.features.dot(dense_weights) + mt_metric_scale * (cur_good.mt_metric - cur_bad.mt_metric); - cerr << "LOSS: " << loss << endl; + //cerr << "LOSS: " << loss << endl; if (loss > 0.0) { SparseVector<double> diff = cur_good.features; diff -= cur_bad.features; @@ -228,10 +255,17 @@ int main(int argc, char** argv) { //cerr << "L: " << lambdas << endl; } } + tot += lambdas; + ++lcount; ++cur_sent; - static int cc = 0; ++cc; if (cc==250) converged = true; } - weights.WriteToFile("-"); + cerr << endl; + weights.WriteToFile("weights.mira-final.gz", true, &msg); + tot /= lcount; + weights.InitFromVector(tot); + msg = "# MIRA tuned weights (averaged vector)"; + weights.WriteToFile("weights.mira-final-avg.gz", true, &msg); + cerr << "Optimization complete.\\AVERAGED WEIGHTS: weights.mira-final-avg.gz\n"; return 0; } |