diff options
Diffstat (limited to 'klm/util/double-conversion/ieee.h')
-rw-r--r-- | klm/util/double-conversion/ieee.h | 398 |
1 files changed, 398 insertions, 0 deletions
diff --git a/klm/util/double-conversion/ieee.h b/klm/util/double-conversion/ieee.h new file mode 100644 index 00000000..839dc47d --- /dev/null +++ b/klm/util/double-conversion/ieee.h @@ -0,0 +1,398 @@ +// Copyright 2012 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following +// disclaimer in the documentation and/or other materials provided +// with the distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived +// from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef DOUBLE_CONVERSION_DOUBLE_H_ +#define DOUBLE_CONVERSION_DOUBLE_H_ + +#include "diy-fp.h" + +namespace double_conversion { + +// We assume that doubles and uint64_t have the same endianness. +static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); } +static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); } +static uint32_t float_to_uint32(float f) { return BitCast<uint32_t>(f); } +static float uint32_to_float(uint32_t d32) { return BitCast<float>(d32); } + +// Helper functions for doubles. +class Double { + public: + static const uint64_t kSignMask = UINT64_2PART_C(0x80000000, 00000000); + static const uint64_t kExponentMask = UINT64_2PART_C(0x7FF00000, 00000000); + static const uint64_t kSignificandMask = UINT64_2PART_C(0x000FFFFF, FFFFFFFF); + static const uint64_t kHiddenBit = UINT64_2PART_C(0x00100000, 00000000); + static const int kPhysicalSignificandSize = 52; // Excludes the hidden bit. + static const int kSignificandSize = 53; + + Double() : d64_(0) {} + explicit Double(double d) : d64_(double_to_uint64(d)) {} + explicit Double(uint64_t d64) : d64_(d64) {} + explicit Double(DiyFp diy_fp) + : d64_(DiyFpToUint64(diy_fp)) {} + + // The value encoded by this Double must be greater or equal to +0.0. + // It must not be special (infinity, or NaN). + DiyFp AsDiyFp() const { + ASSERT(Sign() > 0); + ASSERT(!IsSpecial()); + return DiyFp(Significand(), Exponent()); + } + + // The value encoded by this Double must be strictly greater than 0. + DiyFp AsNormalizedDiyFp() const { + ASSERT(value() > 0.0); + uint64_t f = Significand(); + int e = Exponent(); + + // The current double could be a denormal. + while ((f & kHiddenBit) == 0) { + f <<= 1; + e--; + } + // Do the final shifts in one go. + f <<= DiyFp::kSignificandSize - kSignificandSize; + e -= DiyFp::kSignificandSize - kSignificandSize; + return DiyFp(f, e); + } + + // Returns the double's bit as uint64. + uint64_t AsUint64() const { + return d64_; + } + + // Returns the next greater double. Returns +infinity on input +infinity. + double NextDouble() const { + if (d64_ == kInfinity) return Double(kInfinity).value(); + if (Sign() < 0 && Significand() == 0) { + // -0.0 + return 0.0; + } + if (Sign() < 0) { + return Double(d64_ - 1).value(); + } else { + return Double(d64_ + 1).value(); + } + } + + double PreviousDouble() const { + if (d64_ == (kInfinity | kSignMask)) return -Double::Infinity(); + if (Sign() < 0) { + return Double(d64_ + 1).value(); + } else { + if (Significand() == 0) return -0.0; + return Double(d64_ - 1).value(); + } + } + + int Exponent() const { + if (IsDenormal()) return kDenormalExponent; + + uint64_t d64 = AsUint64(); + int biased_e = + static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize); + return biased_e - kExponentBias; + } + + uint64_t Significand() const { + uint64_t d64 = AsUint64(); + uint64_t significand = d64 & kSignificandMask; + if (!IsDenormal()) { + return significand + kHiddenBit; + } else { + return significand; + } + } + + // Returns true if the double is a denormal. + bool IsDenormal() const { + uint64_t d64 = AsUint64(); + return (d64 & kExponentMask) == 0; + } + + // We consider denormals not to be special. + // Hence only Infinity and NaN are special. + bool IsSpecial() const { + uint64_t d64 = AsUint64(); + return (d64 & kExponentMask) == kExponentMask; + } + + bool IsNan() const { + uint64_t d64 = AsUint64(); + return ((d64 & kExponentMask) == kExponentMask) && + ((d64 & kSignificandMask) != 0); + } + + bool IsInfinite() const { + uint64_t d64 = AsUint64(); + return ((d64 & kExponentMask) == kExponentMask) && + ((d64 & kSignificandMask) == 0); + } + + int Sign() const { + uint64_t d64 = AsUint64(); + return (d64 & kSignMask) == 0? 1: -1; + } + + // Precondition: the value encoded by this Double must be greater or equal + // than +0.0. + DiyFp UpperBoundary() const { + ASSERT(Sign() > 0); + return DiyFp(Significand() * 2 + 1, Exponent() - 1); + } + + // Computes the two boundaries of this. + // The bigger boundary (m_plus) is normalized. The lower boundary has the same + // exponent as m_plus. + // Precondition: the value encoded by this Double must be greater than 0. + void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { + ASSERT(value() > 0.0); + DiyFp v = this->AsDiyFp(); + DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); + DiyFp m_minus; + if (LowerBoundaryIsCloser()) { + m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); + } else { + m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); + } + m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); + m_minus.set_e(m_plus.e()); + *out_m_plus = m_plus; + *out_m_minus = m_minus; + } + + bool LowerBoundaryIsCloser() const { + // The boundary is closer if the significand is of the form f == 2^p-1 then + // the lower boundary is closer. + // Think of v = 1000e10 and v- = 9999e9. + // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but + // at a distance of 1e8. + // The only exception is for the smallest normal: the largest denormal is + // at the same distance as its successor. + // Note: denormals have the same exponent as the smallest normals. + bool physical_significand_is_zero = ((AsUint64() & kSignificandMask) == 0); + return physical_significand_is_zero && (Exponent() != kDenormalExponent); + } + + double value() const { return uint64_to_double(d64_); } + + // Returns the significand size for a given order of magnitude. + // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude. + // This function returns the number of significant binary digits v will have + // once it's encoded into a double. In almost all cases this is equal to + // kSignificandSize. The only exceptions are denormals. They start with + // leading zeroes and their effective significand-size is hence smaller. + static int SignificandSizeForOrderOfMagnitude(int order) { + if (order >= (kDenormalExponent + kSignificandSize)) { + return kSignificandSize; + } + if (order <= kDenormalExponent) return 0; + return order - kDenormalExponent; + } + + static double Infinity() { + return Double(kInfinity).value(); + } + + static double NaN() { + return Double(kNaN).value(); + } + + private: + static const int kExponentBias = 0x3FF + kPhysicalSignificandSize; + static const int kDenormalExponent = -kExponentBias + 1; + static const int kMaxExponent = 0x7FF - kExponentBias; + static const uint64_t kInfinity = UINT64_2PART_C(0x7FF00000, 00000000); + static const uint64_t kNaN = UINT64_2PART_C(0x7FF80000, 00000000); + + const uint64_t d64_; + + static uint64_t DiyFpToUint64(DiyFp diy_fp) { + uint64_t significand = diy_fp.f(); + int exponent = diy_fp.e(); + while (significand > kHiddenBit + kSignificandMask) { + significand >>= 1; + exponent++; + } + if (exponent >= kMaxExponent) { + return kInfinity; + } + if (exponent < kDenormalExponent) { + return 0; + } + while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) { + significand <<= 1; + exponent--; + } + uint64_t biased_exponent; + if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) { + biased_exponent = 0; + } else { + biased_exponent = static_cast<uint64_t>(exponent + kExponentBias); + } + return (significand & kSignificandMask) | + (biased_exponent << kPhysicalSignificandSize); + } +}; + +class Single { + public: + static const uint32_t kSignMask = 0x80000000; + static const uint32_t kExponentMask = 0x7F800000; + static const uint32_t kSignificandMask = 0x007FFFFF; + static const uint32_t kHiddenBit = 0x00800000; + static const int kPhysicalSignificandSize = 23; // Excludes the hidden bit. + static const int kSignificandSize = 24; + + Single() : d32_(0) {} + explicit Single(float f) : d32_(float_to_uint32(f)) {} + explicit Single(uint32_t d32) : d32_(d32) {} + + // The value encoded by this Single must be greater or equal to +0.0. + // It must not be special (infinity, or NaN). + DiyFp AsDiyFp() const { + ASSERT(Sign() > 0); + ASSERT(!IsSpecial()); + return DiyFp(Significand(), Exponent()); + } + + // Returns the single's bit as uint64. + uint32_t AsUint32() const { + return d32_; + } + + int Exponent() const { + if (IsDenormal()) return kDenormalExponent; + + uint32_t d32 = AsUint32(); + int biased_e = + static_cast<int>((d32 & kExponentMask) >> kPhysicalSignificandSize); + return biased_e - kExponentBias; + } + + uint32_t Significand() const { + uint32_t d32 = AsUint32(); + uint32_t significand = d32 & kSignificandMask; + if (!IsDenormal()) { + return significand + kHiddenBit; + } else { + return significand; + } + } + + // Returns true if the single is a denormal. + bool IsDenormal() const { + uint32_t d32 = AsUint32(); + return (d32 & kExponentMask) == 0; + } + + // We consider denormals not to be special. + // Hence only Infinity and NaN are special. + bool IsSpecial() const { + uint32_t d32 = AsUint32(); + return (d32 & kExponentMask) == kExponentMask; + } + + bool IsNan() const { + uint32_t d32 = AsUint32(); + return ((d32 & kExponentMask) == kExponentMask) && + ((d32 & kSignificandMask) != 0); + } + + bool IsInfinite() const { + uint32_t d32 = AsUint32(); + return ((d32 & kExponentMask) == kExponentMask) && + ((d32 & kSignificandMask) == 0); + } + + int Sign() const { + uint32_t d32 = AsUint32(); + return (d32 & kSignMask) == 0? 1: -1; + } + + // Computes the two boundaries of this. + // The bigger boundary (m_plus) is normalized. The lower boundary has the same + // exponent as m_plus. + // Precondition: the value encoded by this Single must be greater than 0. + void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { + ASSERT(value() > 0.0); + DiyFp v = this->AsDiyFp(); + DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); + DiyFp m_minus; + if (LowerBoundaryIsCloser()) { + m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); + } else { + m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); + } + m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); + m_minus.set_e(m_plus.e()); + *out_m_plus = m_plus; + *out_m_minus = m_minus; + } + + // Precondition: the value encoded by this Single must be greater or equal + // than +0.0. + DiyFp UpperBoundary() const { + ASSERT(Sign() > 0); + return DiyFp(Significand() * 2 + 1, Exponent() - 1); + } + + bool LowerBoundaryIsCloser() const { + // The boundary is closer if the significand is of the form f == 2^p-1 then + // the lower boundary is closer. + // Think of v = 1000e10 and v- = 9999e9. + // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but + // at a distance of 1e8. + // The only exception is for the smallest normal: the largest denormal is + // at the same distance as its successor. + // Note: denormals have the same exponent as the smallest normals. + bool physical_significand_is_zero = ((AsUint32() & kSignificandMask) == 0); + return physical_significand_is_zero && (Exponent() != kDenormalExponent); + } + + float value() const { return uint32_to_float(d32_); } + + static float Infinity() { + return Single(kInfinity).value(); + } + + static float NaN() { + return Single(kNaN).value(); + } + + private: + static const int kExponentBias = 0x7F + kPhysicalSignificandSize; + static const int kDenormalExponent = -kExponentBias + 1; + static const int kMaxExponent = 0xFF - kExponentBias; + static const uint32_t kInfinity = 0x7F800000; + static const uint32_t kNaN = 0x7FC00000; + + const uint32_t d32_; +}; + +} // namespace double_conversion + +#endif // DOUBLE_CONVERSION_DOUBLE_H_ |