summaryrefslogtreecommitdiff
path: root/gi
diff options
context:
space:
mode:
Diffstat (limited to 'gi')
-rw-r--r--gi/pf/Makefile.am4
-rw-r--r--gi/pf/learn_cfg.cc (renamed from gi/pf/hierolm.cc)175
2 files changed, 132 insertions, 47 deletions
diff --git a/gi/pf/Makefile.am b/gi/pf/Makefile.am
index ed5b6fd3..0cf0bc63 100644
--- a/gi/pf/Makefile.am
+++ b/gi/pf/Makefile.am
@@ -1,4 +1,4 @@
-bin_PROGRAMS = cbgi brat dpnaive pfbrat pfdist itg pfnaive condnaive align-lexonly align-lexonly-pyp hierolm
+bin_PROGRAMS = cbgi brat dpnaive pfbrat pfdist itg pfnaive condnaive align-lexonly align-lexonly-pyp learn_cfg
noinst_LIBRARIES = libpf.a
libpf_a_SOURCES = base_distributions.cc reachability.cc cfg_wfst_composer.cc corpus.cc unigrams.cc ngram_base.cc
@@ -9,7 +9,7 @@ align_lexonly_pyp_SOURCES = align-lexonly-pyp.cc
itg_SOURCES = itg.cc
-hierolm_SOURCES = hierolm.cc
+learn_cfg_SOURCES = learn_cfg.cc
condnaive_SOURCES = condnaive.cc
diff --git a/gi/pf/hierolm.cc b/gi/pf/learn_cfg.cc
index afb12fef..3d202816 100644
--- a/gi/pf/hierolm.cc
+++ b/gi/pf/learn_cfg.cc
@@ -25,12 +25,21 @@ using namespace tr1;
namespace po = boost::program_options;
shared_ptr<MT19937> prng;
+vector<int> nt_vocab;
+vector<int> nt_id_to_index;
+static unsigned kMAX_RULE_SIZE = 0;
+static unsigned kMAX_ARITY = 0;
+static bool kALLOW_MIXED = true; // allow rules with mixed terminals and NTs
void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
po::options_description opts("Configuration options");
opts.add_options()
("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples")
("input,i",po::value<string>(),"Read parallel data from")
+ ("max_rule_size,m", po::value<unsigned>()->default_value(0), "Maximum rule size (0 for unlimited)")
+ ("max_arity,a", po::value<unsigned>()->default_value(0), "Maximum number of nonterminals in a rule (0 for unlimited)")
+ ("no_mixed_rules,M", "Do not mix terminals and nonterminals in a rule RHS")
+ ("nonterminals,n", po::value<unsigned>()->default_value(1), "Size of nonterminal vocabulary")
("random_seed,S",po::value<uint32_t>(), "Random seed");
po::options_description clo("Command line options");
clo.add_options()
@@ -53,9 +62,9 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
}
}
-void ReadCorpus(const string& filename,
- vector<vector<WordID> >* e,
- set<WordID>* vocab_e) {
+unsigned ReadCorpus(const string& filename,
+ vector<vector<WordID> >* e,
+ set<WordID>* vocab_e) {
e->clear();
vocab_e->clear();
istream* in;
@@ -65,6 +74,7 @@ void ReadCorpus(const string& filename,
in = new ifstream(filename.c_str());
assert(*in);
string line;
+ unsigned toks = 0;
while(*in) {
getline(*in, line);
if (line.empty() && !*in) break;
@@ -73,8 +83,10 @@ void ReadCorpus(const string& filename,
TD::ConvertSentence(line, &le);
for (unsigned i = 0; i < le.size(); ++i)
vocab_e->insert(le[i]);
+ toks += le.size();
}
if (in != &cin) delete in;
+ return toks;
}
struct Grid {
@@ -107,29 +119,32 @@ struct BaseRuleModel {
};
struct HieroLMModel {
- explicit HieroLMModel(unsigned vocab_size) : p0(vocab_size), x(1,1,1,1) {}
+ explicit HieroLMModel(unsigned vocab_size, unsigned num_nts = 1) : p0(vocab_size, num_nts), nts(num_nts, CCRP<TRule>(1,1,1,1)) {}
prob_t Prob(const TRule& r) const {
- return x.probT<prob_t>(r, p0(r));
+ return nts[nt_id_to_index[-r.lhs_]].probT<prob_t>(r, p0(r));
}
int Increment(const TRule& r, MT19937* rng) {
- return x.incrementT<prob_t>(r, p0(r), rng);
+ return nts[nt_id_to_index[-r.lhs_]].incrementT<prob_t>(r, p0(r), rng);
// return x.increment(r);
}
int Decrement(const TRule& r, MT19937* rng) {
- return x.decrement(r, rng);
+ return nts[nt_id_to_index[-r.lhs_]].decrement(r, rng);
//return x.decrement(r);
}
prob_t Likelihood() const {
- prob_t p;
- p.logeq(x.log_crp_prob());
- for (CCRP<TRule>::const_iterator it = x.begin(); it != x.end(); ++it) {
- prob_t tp = p0(it->first);
- tp.poweq(it->second.table_counts_.size());
- p *= tp;
+ prob_t p = prob_t::One();
+ for (unsigned i = 0; i < nts.size(); ++i) {
+ prob_t q; q.logeq(nts[i].log_crp_prob());
+ p *= q;
+ for (CCRP<TRule>::const_iterator it = nts[i].begin(); it != nts[i].end(); ++it) {
+ prob_t tp = p0(it->first);
+ tp.poweq(it->second.table_counts_.size());
+ p *= tp;
+ }
}
//for (CCRP_OneTable<TRule>::const_iterator it = x.begin(); it != x.end(); ++it)
// p *= p0(it->first);
@@ -137,12 +152,13 @@ struct HieroLMModel {
}
void ResampleHyperparameters(MT19937* rng) {
- x.resample_hyperparameters(rng);
- cerr << " d=" << x.discount() << ", alpha=" << x.concentration() << endl;
+ for (unsigned i = 0; i < nts.size(); ++i)
+ nts[i].resample_hyperparameters(rng);
+ cerr << " d=" << nts[0].discount() << ", alpha=" << nts[0].concentration() << endl;
}
const BaseRuleModel p0;
- CCRP<TRule> x;
+ vector<CCRP<TRule> > nts;
//CCRP_OneTable<TRule> x;
};
@@ -152,24 +168,29 @@ HieroLMModel* plm;
struct NPGrammarIter : public GrammarIter, public RuleBin {
NPGrammarIter() : arity() { tofreelist.push_back(this); }
- NPGrammarIter(const TRulePtr& inr, const int a, int symbol) : arity(a + (symbol < 0 ? 1 : 0)) {
+ NPGrammarIter(const TRulePtr& inr, const int a, int symbol) : arity(a) {
if (inr) {
r.reset(new TRule(*inr));
} else {
- static const int kLHS = -TD::Convert("X");
r.reset(new TRule);
- r->lhs_ = kLHS;
}
TRule& rr = *r;
+ rr.lhs_ = nt_vocab[0];
rr.f_.push_back(symbol);
rr.e_.push_back(symbol < 0 ? (1-int(arity)) : symbol);
tofreelist.push_back(this);
}
+ inline static unsigned NextArity(int cur_a, int symbol) {
+ return cur_a + (symbol <= 0 ? 1 : 0);
+ }
virtual int GetNumRules() const {
- if (r) return 1; else return 0;
+ if (r) return nt_vocab.size(); else return 0;
}
- virtual TRulePtr GetIthRule(int) const {
- return r;
+ virtual TRulePtr GetIthRule(int i) const {
+ if (i == 0) return r;
+ TRulePtr nr(new TRule(*r));
+ nr->lhs_ = nt_vocab[i];
+ return nr;
}
virtual int Arity() const {
return arity;
@@ -178,7 +199,18 @@ struct NPGrammarIter : public GrammarIter, public RuleBin {
if (!r) return NULL; else return this;
}
virtual const GrammarIter* Extend(int symbol) const {
- return new NPGrammarIter(r, arity, symbol);
+ const int next_arity = NextArity(arity, symbol);
+ if (kMAX_ARITY && next_arity > kMAX_ARITY)
+ return NULL;
+ if (!kALLOW_MIXED && r) {
+ bool t1 = r->f_.front() <= 0;
+ bool t2 = symbol <= 0;
+ if (t1 != t2) return NULL;
+ }
+ if (!kMAX_RULE_SIZE || !r || (r->f_.size() < kMAX_RULE_SIZE))
+ return new NPGrammarIter(r, next_arity, symbol);
+ else
+ return NULL;
}
const unsigned char arity;
TRulePtr r;
@@ -190,12 +222,15 @@ struct NPGrammar : public Grammar {
}
};
-void SampleDerivation(const Hypergraph& hg, MT19937* rng, vector<unsigned>* sampled_deriv, HieroLMModel* plm) {
- HieroLMModel& lm = *plm;
+prob_t TotalProb(const Hypergraph& hg) {
+ return Inside<prob_t, EdgeProb>(hg);
+}
+
+void SampleDerivation(const Hypergraph& hg, MT19937* rng, vector<unsigned>* sampled_deriv) {
vector<prob_t> node_probs;
- const prob_t total_prob = Inside<prob_t, EdgeProb>(hg, &node_probs);
+ Inside<prob_t, EdgeProb>(hg, &node_probs);
queue<unsigned> q;
- q.push(hg.nodes_.size() - 3);
+ q.push(hg.nodes_.size() - 2);
while(!q.empty()) {
unsigned cur_node_id = q.front();
// cerr << "NODE=" << cur_node_id << endl;
@@ -248,53 +283,95 @@ void DecrementDerivation(const Hypergraph& hg, const vector<unsigned>& d, HieroL
int main(int argc, char** argv) {
po::variables_map conf;
+
+ InitCommandLine(argc, argv, &conf);
+ nt_vocab.resize(conf["nonterminals"].as<unsigned>());
+ assert(nt_vocab.size() > 0);
+ assert(nt_vocab.size() < 26);
+ {
+ string nt = "X";
+ for (unsigned i = 0; i < nt_vocab.size(); ++i) {
+ if (nt_vocab.size() > 1) nt[0] = ('A' + i);
+ int pid = TD::Convert(nt);
+ nt_vocab[i] = -pid;
+ if (pid >= nt_id_to_index.size()) {
+ nt_id_to_index.resize(pid + 1, -1);
+ }
+ nt_id_to_index[pid] = i;
+ }
+ }
vector<GrammarPtr> grammars;
grammars.push_back(GrammarPtr(new NPGrammar));
- InitCommandLine(argc, argv, &conf);
const unsigned samples = conf["samples"].as<unsigned>();
+ kMAX_RULE_SIZE = conf["max_rule_size"].as<unsigned>();
+ if (kMAX_RULE_SIZE == 1) {
+ cerr << "Invalid maximum rule size: must be 0 or >1\n";
+ return 1;
+ }
+ kMAX_ARITY = conf["max_arity"].as<unsigned>();
+ if (kMAX_ARITY == 1) {
+ cerr << "Invalid maximum arity: must be 0 or >1\n";
+ return 1;
+ }
+ kALLOW_MIXED = !conf.count("no_mixed_rules");
if (conf.count("random_seed"))
prng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
else
prng.reset(new MT19937);
MT19937& rng = *prng;
-
vector<vector<WordID> > corpuse;
set<WordID> vocabe;
cerr << "Reading corpus...\n";
- ReadCorpus(conf["input"].as<string>(), &corpuse, &vocabe);
+ const unsigned toks = ReadCorpus(conf["input"].as<string>(), &corpuse, &vocabe);
cerr << "E-corpus size: " << corpuse.size() << " sentences\t (" << vocabe.size() << " word types)\n";
- HieroLMModel lm(vocabe.size());
+ HieroLMModel lm(vocabe.size(), nt_vocab.size());
plm = &lm;
- ExhaustiveBottomUpParser parser("X", grammars);
+ ExhaustiveBottomUpParser parser(TD::Convert(-nt_vocab[0]), grammars);
Hypergraph hg;
- const int kX = -TD::Convert("X");
+ const int kGoal = -TD::Convert("Goal");
const int kLP = FD::Convert("LogProb");
SparseVector<double> v; v.set_value(kLP, 1.0);
vector<vector<unsigned> > derivs(corpuse.size());
+ vector<Lattice> cl(corpuse.size());
+ for (int ci = 0; ci < corpuse.size(); ++ci) {
+ vector<int>& src = corpuse[ci];
+ Lattice& lat = cl[ci];
+ lat.resize(src.size());
+ for (unsigned i = 0; i < src.size(); ++i)
+ lat[i].push_back(LatticeArc(src[i], 0.0, 1));
+ }
for (int SS=0; SS < samples; ++SS) {
+ const bool is_last = ((samples - 1) == SS);
+ prob_t dlh = prob_t::One();
for (int ci = 0; ci < corpuse.size(); ++ci) {
- vector<int>& src = corpuse[ci];
- Lattice lat(src.size());
- for (unsigned i = 0; i < src.size(); ++i)
- lat[i].push_back(LatticeArc(src[i], 0.0, 1));
+ const vector<int>& src = corpuse[ci];
+ const Lattice& lat = cl[ci];
cerr << TD::GetString(src) << endl;
hg.clear();
parser.Parse(lat, &hg); // exhaustive parse
- DecrementDerivation(hg, derivs[ci], &lm, &rng);
+ vector<unsigned>& d = derivs[ci];
+ if (!is_last) DecrementDerivation(hg, d, &lm, &rng);
for (unsigned i = 0; i < hg.edges_.size(); ++i) {
TRule& r = *hg.edges_[i].rule_;
- if (r.lhs_ == kX)
+ if (r.lhs_ == kGoal)
+ hg.edges_[i].edge_prob_ = prob_t::One();
+ else
hg.edges_[i].edge_prob_ = lm.Prob(r);
}
- vector<unsigned> d;
- SampleDerivation(hg, &rng, &d, &lm);
- derivs[ci] = d;
- IncrementDerivation(hg, derivs[ci], &lm, &rng);
- if (tofreelist.size() > 100000) {
+ if (!is_last) {
+ d.clear();
+ SampleDerivation(hg, &rng, &d);
+ IncrementDerivation(hg, derivs[ci], &lm, &rng);
+ } else {
+ prob_t p = TotalProb(hg);
+ dlh *= p;
+ cerr << " p(sentence) = " << log(p) << "\t" << log(dlh) << endl;
+ }
+ if (tofreelist.size() > 200000) {
cerr << "Freeing ... ";
for (unsigned i = 0; i < tofreelist.size(); ++i)
delete tofreelist[i];
@@ -302,8 +379,16 @@ int main(int argc, char** argv) {
cerr << "Freed.\n";
}
}
- cerr << "LLH=" << lm.Likelihood() << endl;
+ double llh = log(lm.Likelihood());
+ cerr << "LLH=" << llh << "\tENTROPY=" << (-llh / log(2) / toks) << "\tPPL=" << pow(2, -llh / log(2) / toks) << endl;
+ if (SS % 10 == 9) lm.ResampleHyperparameters(&rng);
+ if (is_last) {
+ double z = log(dlh);
+ cerr << "TOTAL_PROB=" << z << "\tENTROPY=" << (-z / log(2) / toks) << "\tPPL=" << pow(2, -z / log(2) / toks) << endl;
+ }
}
+ for (unsigned i = 0; i < nt_vocab.size(); ++i)
+ cerr << lm.nts[i] << endl;
return 0;
}