diff options
Diffstat (limited to 'gi/posterior-regularisation/PhraseContextModel.java')
-rw-r--r-- | gi/posterior-regularisation/PhraseContextModel.java | 466 |
1 files changed, 0 insertions, 466 deletions
diff --git a/gi/posterior-regularisation/PhraseContextModel.java b/gi/posterior-regularisation/PhraseContextModel.java deleted file mode 100644 index 85bcfb89..00000000 --- a/gi/posterior-regularisation/PhraseContextModel.java +++ /dev/null @@ -1,466 +0,0 @@ -// Input of the form: -// " the phantom of the opera " tickets for <PHRASE> tonight ? ||| C=1 ||| seats for <PHRASE> ? </s> ||| C=1 ||| i see <PHRASE> ? </s> ||| C=1 -// phrase TAB [context]+ -// where context = phrase ||| C=... which are separated by ||| - -// Model parameterised as follows: -// - each phrase, p, is allocated a latent state, t -// - this is used to generate the contexts, c -// - each context is generated using 4 independent multinomials, one for each position LL, L, R, RR - -// Training with EM: -// - e-step is estimating q(t) = P(t|p,c) for all x,c -// - m-step is estimating model parameters P(c,t|p) = P(t) P(c|t) -// - PR uses alternate e-step, which first optimizes lambda -// min_q KL(q||p) + delta sum_pt max_c E_q[phi_ptc] -// where -// q(t|p,c) propto p(t,c|p) exp( -phi_ptc ) -// Then q is used to obtain expectations for vanilla M-step. - -// Sexing it up: -// - learn p-specific conditionals P(t|p) -// - or generate phrase internals, e.g., generate edge words from -// different distribution to central words -// - agreement between phrase->context model and context->phrase model - -import java.io.*; -import optimization.gradientBasedMethods.*; -import optimization.gradientBasedMethods.stats.OptimizerStats; -import optimization.gradientBasedMethods.stats.ProjectedOptimizerStats; -import optimization.linesearch.ArmijoLineSearchMinimizationAlongProjectionArc; -import optimization.linesearch.GenericPickFirstStep; -import optimization.linesearch.InterpolationPickFirstStep; -import optimization.linesearch.LineSearchMethod; -import optimization.linesearch.WolfRuleLineSearch; -import optimization.projections.SimplexProjection; -import optimization.stopCriteria.CompositeStopingCriteria; -import optimization.stopCriteria.NormalizedProjectedGradientL2Norm; -import optimization.stopCriteria.NormalizedValueDifference; -import optimization.stopCriteria.ProjectedGradientL2Norm; -import optimization.stopCriteria.StopingCriteria; -import optimization.stopCriteria.ValueDifference; -import optimization.util.MathUtils; -import java.util.*; -import java.util.regex.*; -import gnu.trove.TDoubleArrayList; -import gnu.trove.TIntArrayList; -import static java.lang.Math.*; - -class PhraseContextModel -{ - // model/optimisation configuration parameters - int numTags; - boolean posteriorRegularisation = true; - double constraintScale = 3; // FIXME: make configurable - - // copied from L1LMax in depparsing code - final double c1= 0.0001, c2=0.9, stoppingPrecision = 1e-5, maxStep = 10; - final int maxZoomEvals = 10, maxExtrapolationIters = 200; - int maxProjectionIterations = 200; - int minOccurrencesForProjection = 0; - - // book keeping - int numPositions; - Random rng = new Random(); - - // training set - Corpus training; - - // model parameters (learnt) - double emissions[][][]; // position in 0 .. 3 x tag x word Pr(word | tag, position) - double prior[][]; // phrase x tag Pr(tag | phrase) - double lambda[]; // edge = (phrase, context) x tag flattened lagrange multipliers - - PhraseContextModel(Corpus training, int tags) - { - this.training = training; - this.numTags = tags; - assert (!training.getEdges().isEmpty()); - assert (numTags > 1); - - // now initialise emissions - numPositions = training.getEdges().get(0).getContext().size(); - assert (numPositions > 0); - - emissions = new double[numPositions][numTags][training.getNumTokens()]; - prior = new double[training.getNumEdges()][numTags]; - if (posteriorRegularisation) - lambda = new double[training.getNumEdges() * numTags]; - - for (double[][] emissionTW : emissions) - { - for (double[] emissionW : emissionTW) - { - randomise(emissionW); -// for (int i = 0; i < emissionW.length; ++i) -// emissionW[i] = i+1; -// normalise(emissionW); - } - } - - for (double[] priorTag : prior) - { - randomise(priorTag); -// for (int i = 0; i < priorTag.length; ++i) -// priorTag[i] = i+1; -// normalise(priorTag); - } - } - - void expectationMaximisation(int numIterations) - { - double lastLlh = Double.NEGATIVE_INFINITY; - - for (int iteration = 0; iteration < numIterations; ++iteration) - { - double emissionsCounts[][][] = new double[numPositions][numTags][training.getNumTokens()]; - double priorCounts[][] = new double[training.getNumPhrases()][numTags]; - - // E-step - double llh = 0; - if (posteriorRegularisation) - { - EStepDualObjective objective = new EStepDualObjective(); - - // copied from x2y2withconstraints -// LineSearchMethod ls = new ArmijoLineSearchMinimizationAlongProjectionArc(new InterpolationPickFirstStep(1)); -// OptimizerStats stats = new OptimizerStats(); -// ProjectedGradientDescent optimizer = new ProjectedGradientDescent(ls); -// CompositeStopingCriteria compositeStop = new CompositeStopingCriteria(); -// compositeStop.add(new ProjectedGradientL2Norm(0.001)); -// compositeStop.add(new ValueDifference(0.001)); -// optimizer.setMaxIterations(50); -// boolean succeed = optimizer.optimize(objective,stats,compositeStop); - - // copied from depparser l1lmaxobjective - ProjectedOptimizerStats stats = new ProjectedOptimizerStats(); - GenericPickFirstStep pickFirstStep = new GenericPickFirstStep(1); - LineSearchMethod linesearch = new WolfRuleLineSearch(pickFirstStep, c1, c2); - ProjectedGradientDescent optimizer = new ProjectedGradientDescent(linesearch); - optimizer.setMaxIterations(maxProjectionIterations); - CompositeStopingCriteria stop = new CompositeStopingCriteria(); - stop.add(new NormalizedProjectedGradientL2Norm(stoppingPrecision)); - stop.add(new NormalizedValueDifference(stoppingPrecision)); - boolean succeed = optimizer.optimize(objective, stats, stop); - - System.out.println("Ended optimzation Projected Gradient Descent\n" + stats.prettyPrint(1)); - //System.out.println("Solution: " + objective.parameters); - if (!succeed) - System.out.println("Failed to optimize"); - //System.out.println("Ended optimization in " + optimizer.getCurrentIteration()); - - //lambda = objective.getParameters(); - llh = objective.primal(); - - for (int i = 0; i < training.getNumPhrases(); ++i) - { - List<Corpus.Edge> edges = training.getEdgesForPhrase(i); - for (int j = 0; j < edges.size(); ++j) - { - Corpus.Edge e = edges.get(j); - for (int t = 0; t < numTags; t++) - { - double p = objective.q.get(i).get(j).get(t); - priorCounts[i][t] += e.getCount() * p; - TIntArrayList tokens = e.getContext(); - for (int k = 0; k < tokens.size(); ++k) - emissionsCounts[k][t][tokens.get(k)] += e.getCount() * p; - } - } - } - } - else - { - for (int i = 0; i < training.getNumPhrases(); ++i) - { - List<Corpus.Edge> edges = training.getEdgesForPhrase(i); - for (int j = 0; j < edges.size(); ++j) - { - Corpus.Edge e = edges.get(j); - double probs[] = posterior(i, e); - double z = normalise(probs); - llh += log(z) * e.getCount(); - - TIntArrayList tokens = e.getContext(); - for (int t = 0; t < numTags; ++t) - { - priorCounts[i][t] += e.getCount() * probs[t]; - for (int k = 0; k < tokens.size(); ++k) - emissionsCounts[j][t][tokens.get(k)] += e.getCount() * probs[t]; - } - } - } - } - - // M-step: normalise - for (double[][] emissionTW : emissionsCounts) - for (double[] emissionW : emissionTW) - normalise(emissionW); - - for (double[] priorTag : priorCounts) - normalise(priorTag); - - emissions = emissionsCounts; - prior = priorCounts; - - System.out.println("Iteration " + iteration + " llh " + llh); - -// if (llh - lastLlh < 1e-4) -// break; -// else -// lastLlh = llh; - } - } - - static double normalise(double probs[]) - { - double z = 0; - for (double p : probs) - z += p; - for (int i = 0; i < probs.length; ++i) - probs[i] /= z; - return z; - } - - void randomise(double probs[]) - { - double z = 0; - for (int i = 0; i < probs.length; ++i) - { - probs[i] = 10 + rng.nextDouble(); - z += probs[i]; - } - - for (int i = 0; i < probs.length; ++i) - probs[i] /= z; - } - - static int argmax(double probs[]) - { - double m = Double.NEGATIVE_INFINITY; - int mi = -1; - for (int i = 0; i < probs.length; ++i) - { - if (probs[i] > m) - { - m = probs[i]; - mi = i; - } - } - return mi; - } - - double[] posterior(int phraseId, Corpus.Edge e) // unnormalised - { - double probs[] = new double[numTags]; - TIntArrayList tokens = e.getContext(); - for (int t = 0; t < numTags; ++t) - { - probs[t] = prior[phraseId][t]; - for (int k = 0; k < tokens.size(); ++k) - probs[t] *= emissions[k][t][tokens.get(k)]; - } - return probs; - } - - void displayPosterior() - { - for (int i = 0; i < training.getNumPhrases(); ++i) - { - List<Corpus.Edge> edges = training.getEdgesForPhrase(i); - for (Corpus.Edge e: edges) - { - double probs[] = posterior(i, e); - normalise(probs); - - // emit phrase - System.out.print(e.getPhraseString()); - System.out.print("\t"); - System.out.print(e.getContextString()); - System.out.print("||| C=" + e.getCount() + " |||"); - - int t = argmax(probs); - System.out.print(" " + t + " ||| " + probs[t]); - // for (int t = 0; t < numTags; ++t) - // System.out.print(" " + probs[t]); - System.out.println(); - } - } - } - - public static void main(String[] args) - { - assert (args.length >= 2); - try - { - Corpus corpus = Corpus.readFromFile(new FileReader(new File(args[0]))); - PhraseContextModel model = new PhraseContextModel(corpus, Integer.parseInt(args[1])); - model.expectationMaximisation(Integer.parseInt(args[2])); - model.displayPosterior(); - } - catch (IOException e) - { - System.out.println("Failed to read input file: " + args[0]); - e.printStackTrace(); - } - } - - class EStepDualObjective extends ProjectedObjective - { - List<List<TDoubleArrayList>> conditionals; // phrase id x context # x tag - precomputed - List<List<TDoubleArrayList>> q; // ditto, but including exp(-lambda) terms - double objective = 0; // log(z) - // Objective.gradient = d log(z) / d lambda = E_q[phi] - double llh = 0; - - public EStepDualObjective() - { - super(); - // compute conditionals p(context, tag | phrase) for all training instances - conditionals = new ArrayList<List<TDoubleArrayList>>(training.getNumPhrases()); - q = new ArrayList<List<TDoubleArrayList>>(training.getNumPhrases()); - for (int i = 0; i < training.getNumPhrases(); ++i) - { - List<Corpus.Edge> edges = training.getEdgesForPhrase(i); - - conditionals.add(new ArrayList<TDoubleArrayList>(edges.size())); - q.add(new ArrayList<TDoubleArrayList>(edges.size())); - - for (int j = 0; j < edges.size(); ++j) - { - Corpus.Edge e = edges.get(j); - double probs[] = posterior(i, e); - double z = normalise(probs); - llh += log(z) * e.getCount(); - conditionals.get(i).add(new TDoubleArrayList(probs)); - q.get(i).add(new TDoubleArrayList(probs)); - } - } - - gradient = new double[training.getNumEdges()*numTags]; - setInitialParameters(lambda); - computeObjectiveAndGradient(); - } - - @Override - public double[] projectPoint(double[] point) - { - SimplexProjection p = new SimplexProjection(constraintScale); - - double[] newPoint = point.clone(); - int edgeIndex = 0; - for (int i = 0; i < training.getNumPhrases(); ++i) - { - List<Corpus.Edge> edges = training.getEdgesForPhrase(i); - - for (int t = 0; t < numTags; t++) - { - double[] subPoint = new double[edges.size()]; - for (int j = 0; j < edges.size(); ++j) - subPoint[j] = point[edgeIndex+j*numTags+t]; - - p.project(subPoint); - for (int j = 0; j < edges.size(); ++j) - newPoint[edgeIndex+j*numTags+t] = subPoint[j]; - } - - edgeIndex += edges.size() * numTags; - } -// System.out.println("Proj from: " + Arrays.toString(point)); -// System.out.println("Proj to: " + Arrays.toString(newPoint)); - return newPoint; - } - - @Override - public void setParameters(double[] params) - { - super.setParameters(params); - computeObjectiveAndGradient(); - } - - @Override - public double[] getGradient() - { - gradientCalls += 1; - return gradient; - } - - @Override - public double getValue() - { - functionCalls += 1; - return objective; - } - - public void computeObjectiveAndGradient() - { - int edgeIndex = 0; - objective = 0; - Arrays.fill(gradient, 0); - for (int i = 0; i < training.getNumPhrases(); ++i) - { - List<Corpus.Edge> edges = training.getEdgesForPhrase(i); - - for (int j = 0; j < edges.size(); ++j) - { - Corpus.Edge e = edges.get(j); - - double z = 0; - for (int t = 0; t < numTags; t++) - { - double v = conditionals.get(i).get(j).get(t) * exp(-parameters[edgeIndex+t]); - q.get(i).get(j).set(t, v); - z += v; - } - objective += log(z) * e.getCount(); - - for (int t = 0; t < numTags; t++) - { - double v = q.get(i).get(j).get(t) / z; - q.get(i).get(j).set(t, v); - gradient[edgeIndex+t] -= e.getCount() * v; - } - - edgeIndex += numTags; - } - } -// System.out.println("computeObjectiveAndGradient logz=" + objective); -// System.out.println("lambda= " + Arrays.toString(parameters)); -// System.out.println("gradient=" + Arrays.toString(gradient)); - } - - public String toString() - { - StringBuilder sb = new StringBuilder(); - sb.append(getClass().getCanonicalName()).append(" with "); - sb.append(parameters.length).append(" parameters and "); - sb.append(training.getNumPhrases() * numTags).append(" constraints"); - return sb.toString(); - } - - double primal() - { - // primal = llh + KL(q||p) + scale * sum_pt max_c E_q[phi_pct] - // kl = sum_Y q(Y) log q(Y) / p(Y|X) - // = sum_Y q(Y) { -lambda . phi(Y) - log Z } - // = -log Z - lambda . E_q[phi] - // = -objective + lambda . gradient - - double kl = -objective + MathUtils.dotProduct(parameters, gradient); - double l1lmax = 0; - for (int i = 0; i < training.getNumPhrases(); ++i) - { - List<Corpus.Edge> edges = training.getEdgesForPhrase(i); - for (int t = 0; t < numTags; t++) - { - double lmax = Double.NEGATIVE_INFINITY; - for (int j = 0; j < edges.size(); ++j) - lmax = max(lmax, q.get(i).get(j).get(t)); - l1lmax += lmax; - } - } - - return llh + kl + constraintScale * l1lmax; - } - } -} |