diff options
Diffstat (limited to 'gi/pf/pyp_word_model.h')
-rw-r--r-- | gi/pf/pyp_word_model.h | 58 |
1 files changed, 58 insertions, 0 deletions
diff --git a/gi/pf/pyp_word_model.h b/gi/pf/pyp_word_model.h new file mode 100644 index 00000000..ff366865 --- /dev/null +++ b/gi/pf/pyp_word_model.h @@ -0,0 +1,58 @@ +#ifndef _PYP_WORD_MODEL_H_ +#define _PYP_WORD_MODEL_H_ + +#include <iostream> +#include <cmath> +#include <vector> +#include "prob.h" +#include "ccrp.h" +#include "m.h" +#include "tdict.h" +#include "os_phrase.h" + +// PYP(d,s,poisson-uniform) represented as a CRP +struct PYPWordModel { + explicit PYPWordModel(const unsigned vocab_e_size, const double mean_len = 5) : + base(prob_t::One()), r(1,1,1,1,0.66,50.0), u0(-std::log(vocab_e_size)), mean_length(mean_len) {} + + void ResampleHyperparameters(MT19937* rng); + + inline prob_t operator()(const std::vector<WordID>& s) const { + return r.prob(s, p0(s)); + } + + inline void Increment(const std::vector<WordID>& s, MT19937* rng) { + if (r.increment(s, p0(s), rng)) + base *= p0(s); + } + + inline void Decrement(const std::vector<WordID>& s, MT19937 *rng) { + if (r.decrement(s, rng)) + base /= p0(s); + } + + inline prob_t Likelihood() const { + prob_t p; p.logeq(r.log_crp_prob()); + p *= base; + return p; + } + + void Summary() const; + + private: + inline double logp0(const std::vector<WordID>& s) const { + return Md::log_poisson(s.size(), mean_length) + s.size() * u0; + } + + inline prob_t p0(const std::vector<WordID>& s) const { + prob_t p; p.logeq(logp0(s)); + return p; + } + + prob_t base; // keeps track of the draws from the base distribution + CCRP<std::vector<WordID> > r; + const double u0; // uniform log prob of generating a letter + const double mean_length; // mean length of a word in the base distribution +}; + +#endif |