diff options
Diffstat (limited to 'gi/clda/src/slice_sampler.h')
-rw-r--r-- | gi/clda/src/slice_sampler.h | 191 |
1 files changed, 0 insertions, 191 deletions
diff --git a/gi/clda/src/slice_sampler.h b/gi/clda/src/slice_sampler.h deleted file mode 100644 index aa48a169..00000000 --- a/gi/clda/src/slice_sampler.h +++ /dev/null @@ -1,191 +0,0 @@ -//! slice-sampler.h is an MCMC slice sampler -//! -//! Mark Johnson, 1st August 2008 - -#ifndef SLICE_SAMPLER_H -#define SLICE_SAMPLER_H - -#include <algorithm> -#include <cassert> -#include <cmath> -#include <iostream> -#include <limits> - -//! slice_sampler_rfc_type{} returns the value of a user-specified -//! function if the argument is within range, or - infinity otherwise -// -template <typename F, typename Fn, typename U> -struct slice_sampler_rfc_type { - F min_x, max_x; - const Fn& f; - U max_nfeval, nfeval; - slice_sampler_rfc_type(F min_x, F max_x, const Fn& f, U max_nfeval) - : min_x(min_x), max_x(max_x), f(f), max_nfeval(max_nfeval), nfeval(0) { } - - F operator() (F x) { - if (min_x < x && x < max_x) { - assert(++nfeval <= max_nfeval); - F fx = f(x); - assert(std::isfinite(fx)); - return fx; - } - return -std::numeric_limits<F>::infinity(); - } -}; // slice_sampler_rfc_type{} - -//! slice_sampler1d() implements the univariate "range doubling" slice sampler -//! described in Neal (2003) "Slice Sampling", The Annals of Statistics 31(3), 705-767. -// -template <typename F, typename LogF, typename Uniform01> -F slice_sampler1d(const LogF& logF0, //!< log of function to sample - F x, //!< starting point - Uniform01& u01, //!< uniform [0,1) random number generator - F min_x = -std::numeric_limits<F>::infinity(), //!< minimum value of support - F max_x = std::numeric_limits<F>::infinity(), //!< maximum value of support - F w = 0.0, //!< guess at initial width - unsigned nsamples=1, //!< number of samples to draw - unsigned max_nfeval=200) //!< max number of function evaluations -{ - typedef unsigned U; - slice_sampler_rfc_type<F,LogF,U> logF(min_x, max_x, logF0, max_nfeval); - - assert(std::isfinite(x)); - - if (w <= 0.0) { // set w to a default width - if (min_x > -std::numeric_limits<F>::infinity() && max_x < std::numeric_limits<F>::infinity()) - w = (max_x - min_x)/4; - else - w = std::max(((x < 0.0) ? -x : x)/4, (F) 0.1); - } - assert(std::isfinite(w)); - - F logFx = logF(x); - for (U sample = 0; sample < nsamples; ++sample) { - F logY = logFx + log(u01()+1e-100); //! slice logFx at this value - assert(std::isfinite(logY)); - - F xl = x - w*u01(); //! lower bound on slice interval - F logFxl = logF(xl); - F xr = xl + w; //! upper bound on slice interval - F logFxr = logF(xr); - - while (logY < logFxl || logY < logFxr) // doubling procedure - if (u01() < 0.5) - logFxl = logF(xl -= xr - xl); - else - logFxr = logF(xr += xr - xl); - - F xl1 = xl; - F xr1 = xr; - while (true) { // shrinking procedure - F x1 = xl1 + u01()*(xr1 - xl1); - if (logY < logF(x1)) { - F xl2 = xl; // acceptance procedure - F xr2 = xr; - bool d = false; - while (xr2 - xl2 > 1.1*w) { - F xm = (xl2 + xr2)/2; - if ((x < xm && x1 >= xm) || (x >= xm && x1 < xm)) - d = true; - if (x1 < xm) - xr2 = xm; - else - xl2 = xm; - if (d && logY >= logF(xl2) && logY >= logF(xr2)) - goto unacceptable; - } - x = x1; - goto acceptable; - } - goto acceptable; - unacceptable: - if (x1 < x) // rest of shrinking procedure - xl1 = x1; - else - xr1 = x1; - } - acceptable: - w = (4*w + (xr1 - xl1))/5; // update width estimate - } - return x; -} - -/* -//! slice_sampler1d() implements a 1-d MCMC slice sampler. -//! It should be correct for unimodal distributions, but -//! not for multimodal ones. -// -template <typename F, typename LogP, typename Uniform01> -F slice_sampler1d(const LogP& logP, //!< log of distribution to sample - F x, //!< initial sample - Uniform01& u01, //!< uniform random number generator - F min_x = -std::numeric_limits<F>::infinity(), //!< minimum value of support - F max_x = std::numeric_limits<F>::infinity(), //!< maximum value of support - F w = 0.0, //!< guess at initial width - unsigned nsamples=1, //!< number of samples to draw - unsigned max_nfeval=200) //!< max number of function evaluations -{ - typedef unsigned U; - assert(std::isfinite(x)); - if (w <= 0.0) { - if (min_x > -std::numeric_limits<F>::infinity() && max_x < std::numeric_limits<F>::infinity()) - w = (max_x - min_x)/4; - else - w = std::max(((x < 0.0) ? -x : x)/4, 0.1); - } - // TRACE4(x, min_x, max_x, w); - F logPx = logP(x); - assert(std::isfinite(logPx)); - U nfeval = 1; - for (U sample = 0; sample < nsamples; ++sample) { - F x0 = x; - F logU = logPx + log(u01()+1e-100); - assert(std::isfinite(logU)); - F r = u01(); - F xl = std::max(min_x, x - r*w); - F xr = std::min(max_x, x + (1-r)*w); - // TRACE3(x, logPx, logU); - while (xl > min_x && logP(xl) > logU) { - xl -= w; - w *= 2; - ++nfeval; - if (nfeval >= max_nfeval) - std::cerr << "## Error: nfeval = " << nfeval << ", max_nfeval = " << max_nfeval << ", sample = " << sample << ", nsamples = " << nsamples << ", r = " << r << ", w = " << w << ", xl = " << xl << std::endl; - assert(nfeval < max_nfeval); - } - xl = std::max(xl, min_x); - while (xr < max_x && logP(xr) > logU) { - xr += w; - w *= 2; - ++nfeval; - if (nfeval >= max_nfeval) - std::cerr << "## Error: nfeval = " << nfeval << ", max_nfeval = " << max_nfeval << ", sample = " << sample << ", nsamples = " << nsamples << ", r = " << r << ", w = " << w << ", xr = " << xr << std::endl; - assert(nfeval < max_nfeval); - } - xr = std::min(xr, max_x); - while (true) { - r = u01(); - x = r*xl + (1-r)*xr; - assert(std::isfinite(x)); - logPx = logP(x); - // TRACE4(logPx, x, xl, xr); - assert(std::isfinite(logPx)); - ++nfeval; - if (nfeval >= max_nfeval) - std::cerr << "## Error: nfeval = " << nfeval << ", max_nfeval = " << max_nfeval << ", sample = " << sample << ", nsamples = " << nsamples << ", r = " << r << ", w = " << w << ", xl = " << xl << ", xr = " << xr << ", x = " << x << std::endl; - assert(nfeval < max_nfeval); - if (logPx > logU) - break; - else if (x > x0) - xr = x; - else - xl = x; - } - // w = (4*w + (xr-xl))/5; // gradually adjust w - } - // TRACE2(logPx, x); - return x; -} // slice_sampler1d() -*/ - -#endif // SLICE_SAMPLER_H |