summaryrefslogtreecommitdiff
path: root/extractor/precomputation.cc
diff options
context:
space:
mode:
Diffstat (limited to 'extractor/precomputation.cc')
-rw-r--r--extractor/precomputation.cc192
1 files changed, 192 insertions, 0 deletions
diff --git a/extractor/precomputation.cc b/extractor/precomputation.cc
new file mode 100644
index 00000000..97a70554
--- /dev/null
+++ b/extractor/precomputation.cc
@@ -0,0 +1,192 @@
+#include "precomputation.h"
+
+#include <iostream>
+#include <queue>
+#include <tr1/unordered_set>
+#include <tuple>
+#include <vector>
+
+#include <boost/functional/hash.hpp>
+
+#include "data_array.h"
+#include "suffix_array.h"
+
+using namespace std;
+using namespace tr1;
+
+int Precomputation::NON_TERMINAL = -1;
+
+Precomputation::Precomputation(
+ shared_ptr<SuffixArray> suffix_array, int num_frequent_patterns,
+ int num_super_frequent_patterns, int max_rule_span,
+ int max_rule_symbols, int min_gap_size,
+ int max_frequent_phrase_len, int min_frequency) {
+ vector<int> data = suffix_array->GetData()->GetData();
+ vector<vector<int> > frequent_patterns = FindMostFrequentPatterns(
+ suffix_array, data, num_frequent_patterns, max_frequent_phrase_len,
+ min_frequency);
+
+ unordered_set<vector<int>, boost::hash<vector<int> > > frequent_patterns_set;
+ unordered_set<vector<int>, boost::hash<vector<int> > >
+ super_frequent_patterns_set;
+ for (size_t i = 0; i < frequent_patterns.size(); ++i) {
+ frequent_patterns_set.insert(frequent_patterns[i]);
+ if (i < num_super_frequent_patterns) {
+ super_frequent_patterns_set.insert(frequent_patterns[i]);
+ }
+ }
+
+ vector<tuple<int, int, int> > matchings;
+ for (size_t i = 0; i < data.size(); ++i) {
+ if (data[i] == DataArray::END_OF_LINE) {
+ AddCollocations(matchings, data, max_rule_span, min_gap_size,
+ max_rule_symbols);
+ matchings.clear();
+ continue;
+ }
+ vector<int> pattern;
+ for (int j = 1; j <= max_frequent_phrase_len && i + j <= data.size(); ++j) {
+ pattern.push_back(data[i + j - 1]);
+ if (frequent_patterns_set.count(pattern)) {
+ inverted_index[pattern].push_back(i);
+ int is_super_frequent = super_frequent_patterns_set.count(pattern);
+ matchings.push_back(make_tuple(i, j, is_super_frequent));
+ } else {
+ // If the current pattern is not frequent, any longer pattern having the
+ // current pattern as prefix will not be frequent.
+ break;
+ }
+ }
+ }
+}
+
+vector<vector<int> > Precomputation::FindMostFrequentPatterns(
+ shared_ptr<SuffixArray> suffix_array, const vector<int>& data,
+ int num_frequent_patterns, int max_frequent_phrase_len, int min_frequency) {
+ vector<int> lcp = suffix_array->BuildLCPArray();
+ vector<int> run_start(max_frequent_phrase_len);
+
+ priority_queue<pair<int, pair<int, int> > > heap;
+ for (size_t i = 1; i < lcp.size(); ++i) {
+ for (int len = lcp[i]; len < max_frequent_phrase_len; ++len) {
+ int frequency = i - run_start[len];
+ // TODO(pauldb): Only add patterns that don't span across multiple
+ // sentences.
+ if (frequency >= min_frequency) {
+ heap.push(make_pair(frequency,
+ make_pair(suffix_array->GetSuffix(run_start[len]), len + 1)));
+ }
+ run_start[len] = i;
+ }
+ }
+
+ vector<vector<int> > frequent_patterns;
+ for (size_t i = 0; i < num_frequent_patterns && !heap.empty(); ++i) {
+ int start = heap.top().second.first;
+ int len = heap.top().second.second;
+ heap.pop();
+
+ vector<int> pattern(data.begin() + start, data.begin() + start + len);
+ frequent_patterns.push_back(pattern);
+ }
+ return frequent_patterns;
+}
+
+void Precomputation::AddCollocations(
+ const vector<tuple<int, int, int> >& matchings, const vector<int>& data,
+ int max_rule_span, int min_gap_size, int max_rule_symbols) {
+ for (size_t i = 0; i < matchings.size(); ++i) {
+ int start1, size1, is_super1;
+ tie(start1, size1, is_super1) = matchings[i];
+
+ for (size_t j = i + 1; j < matchings.size(); ++j) {
+ int start2, size2, is_super2;
+ tie(start2, size2, is_super2) = matchings[j];
+ if (start2 - start1 >= max_rule_span) {
+ break;
+ }
+
+ if (start2 - start1 - size1 >= min_gap_size
+ && start2 + size2 - size1 <= max_rule_span
+ && size1 + size2 + 1 <= max_rule_symbols) {
+ vector<int> pattern(data.begin() + start1,
+ data.begin() + start1 + size1);
+ pattern.push_back(Precomputation::NON_TERMINAL);
+ pattern.insert(pattern.end(), data.begin() + start2,
+ data.begin() + start2 + size2);
+ AddStartPositions(collocations[pattern], start1, start2);
+
+ if (is_super2) {
+ pattern.push_back(Precomputation::NON_TERMINAL);
+ for (size_t k = j + 1; k < matchings.size(); ++k) {
+ int start3, size3, is_super3;
+ tie(start3, size3, is_super3) = matchings[k];
+ if (start3 - start1 >= max_rule_span) {
+ break;
+ }
+
+ if (start3 - start2 - size2 >= min_gap_size
+ && start3 + size3 - size1 <= max_rule_span
+ && size1 + size2 + size3 + 2 <= max_rule_symbols
+ && (is_super1 || is_super3)) {
+ pattern.insert(pattern.end(), data.begin() + start3,
+ data.begin() + start3 + size3);
+ AddStartPositions(collocations[pattern], start1, start2, start3);
+ pattern.erase(pattern.end() - size3);
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+void Precomputation::AddStartPositions(
+ vector<int>& positions, int pos1, int pos2) {
+ positions.push_back(pos1);
+ positions.push_back(pos2);
+}
+
+void Precomputation::AddStartPositions(
+ vector<int>& positions, int pos1, int pos2, int pos3) {
+ positions.push_back(pos1);
+ positions.push_back(pos2);
+ positions.push_back(pos3);
+}
+
+void Precomputation::WriteBinary(const fs::path& filepath) const {
+ FILE* file = fopen(filepath.string().c_str(), "w");
+
+ // TODO(pauldb): Refactor this code.
+ int size = inverted_index.size();
+ fwrite(&size, sizeof(int), 1, file);
+ for (auto entry: inverted_index) {
+ size = entry.first.size();
+ fwrite(&size, sizeof(int), 1, file);
+ fwrite(entry.first.data(), sizeof(int), size, file);
+
+ size = entry.second.size();
+ fwrite(&size, sizeof(int), 1, file);
+ fwrite(entry.second.data(), sizeof(int), size, file);
+ }
+
+ size = collocations.size();
+ fwrite(&size, sizeof(int), 1, file);
+ for (auto entry: collocations) {
+ size = entry.first.size();
+ fwrite(&size, sizeof(int), 1, file);
+ fwrite(entry.first.data(), sizeof(int), size, file);
+
+ size = entry.second.size();
+ fwrite(&size, sizeof(int), 1, file);
+ fwrite(entry.second.data(), sizeof(int), size, file);
+ }
+}
+
+const Index& Precomputation::GetInvertedIndex() const {
+ return inverted_index;
+}
+
+const Index& Precomputation::GetCollocations() const {
+ return collocations;
+}