diff options
Diffstat (limited to 'dtrain')
| -rw-r--r-- | dtrain/README.md | 124 | 
1 files changed, 72 insertions, 52 deletions
| diff --git a/dtrain/README.md b/dtrain/README.md index 3d09393c..69df83a5 100644 --- a/dtrain/README.md +++ b/dtrain/README.md @@ -6,49 +6,52 @@ Build & run  build ..  <pre>  git clone git://github.com/qlt/cdec-dtrain.git -cd cdec_dtrain -autoreconf -ifv -./configure +cd cdec-dtrain +autoreconf -if[v] +./configure [--disable-gtest]  make  </pre>  and run:  <pre>  cd dtrain/hstreaming/  (edit ini files) -edit hadoop-streaming-job.sh $IN and $OUT +edit the vars in hadoop-streaming-job.sh ($ID, $IN and $OUT)  ./hadoop-streaming-job.sh  </pre> -  Ideas  ----- -* *MULTIPARTITE* ranking (1 vs all, cluster model/score) -* *REMEMBER* sampled translations (merge) -* *SELECT* iteration with highest (_real_) BLEU? -* *GENERATED* data? (perfect translation in kbest) -* *CACHING* (ngrams for scoring) +* *MULTIPARTITE* ranking (1 vs rest, cluster model/score) +* *REMEMBER* sampled translations (merge kbest lists) +* *SELECT* iteration with highest real BLEU on devtest? +* *GENERATED* data? (perfect translation always in kbest) +* *CACHE* ngrams for scoring  * hadoop *PIPES* imlementation  * *ITERATION* variants (shuffle resulting weights, re-iterate)  * *MORE THAN ONE* reference for BLEU? -* *RANDOM RESTARTS* -* use separate TEST SET for each shard +* *RANDOM RESTARTS* or directions +* use separate *TEST SET* for each shard +* *REDUCE* training set (50k?) +* *SYNTAX* features (CD)  Uncertain, known bugs, problems  -------------------------------  * cdec kbest vs 1best (no -k param), rescoring (ref?)? => ok(?)  * no sparse vector in decoder => ok/fixed -* PhraseModel_* features (0..99 seem to be generated, why 99?) -* flex scanner jams on malicious input, we could skip that -* input/grammar caching (strings, files) +* PhraseModel features, mapping? +* flex scanner jams on bad input, we could skip that +* input/grammar caching (strings -> WordIDs) +* look at forest sampling... +* devtest loo or not? why loo grammars larger? (sort psgs | uniq -> grammar) -FIXME ------ -merge dtrain part-* files -mapred count shard sents -250 forest sampling is real bad, bug? -kenlm not portable (i7-2620M vs Intel(R) Xeon(R) CPU E5620 @ 2.40GHz) -metric reporter of bleu for each shard -mapred chaining? hamake? +FIXME, todo +----------- +* merge dtrain part-X files, for better blocks +* mapred count shard sents +* 250 forest sampling is real bad, bug? +* metric reporter of bleu for each shard +* kenlm not portable (i7-2620M vs Intel(R) Xeon(R) CPU E5620 @ 2.40GHz) +* mapred chaining? hamake?  Data  ---- @@ -63,57 +66,74 @@ nc-v6.de-en.cs.loo      peg  ep-v6.de-en.cs          pe  ep-v6.de-en.cs.loo      p -p: prep, e: extract, g: grammar, d: dtrain +a: alignment:, p: prep, e: extract, +g: grammar, d: dtrain  </pre> -  Experiments  ----------- -grammar stats - oov on dev/devtest/test - size - #rules (uniq) - time for building -  ep: 1.5 days on 278 slots (30 nodes) -  nc: ~2 hours ^^^ - -lm stats - oov on dev/devtest/test  - perplex on train/dev/devtest/test - +[grammar stats +  oov on dev/devtest/test +  size +  #rules (uniq) +  time for building +   ep: 1.5 days on 278 slots (30 nodes) +   nc: ~2 hours ^^^ + + lm stats +  oov on dev/devtest/test  +  perplex on train/dev/devtest/test] + +[0]  which word alignment?   berkeleyaligner   giza++ as of Sep 24 2011, mgizapp 0.6.3 - symgiza as of Oct 1 2011 + --symgiza as of Oct 1 2011--   --- - randomly sample 100 from train.loo - run mira/dtrain for 50/60 iterations - w/o lm, wp - measure ibm_bleu on exact same sents + NON LOO + (symgiza unreliable) + randomly sample 100 from train with loo + run dtrain for 100 iterations + w/o all other feats (lm, wp, ...) +Glue + measure ibm bleu on exact same sents + +[1] +lm? + 3-4-5 + open + unk + nounk (-100 for unk) + -- + lm oov weight pos? + no tuning, -100 prob for unk EXPECT: nounk + tuning with dtrain EXPECT: open +[2] +cs? + 'default' weights + +[3] +loo vs non-loo + 'jackknifing' + generalization (determ.!) on dev, test on devtest + +[4]  stability + all with default params   mira: 100   pro: 100   vest: 100   dtrain: 100 - +[undecided]  pro metaparam   (max) iter   regularization + ???  mira metaparam   (max) iter: 10 (nc???) vs 15 (ep???) -lm? - 3-4-5 - open - unk - nounk (-100 for unk) - -- - tune or not??? - lm oov weight pos? -  features to try   NgramFeatures -> target side ngrams   RuleIdentityFeatures | 
