diff options
Diffstat (limited to 'dtrain/test')
-rw-r--r-- | dtrain/test/example/cdec.ini | 7 | ||||
-rw-r--r-- | dtrain/test/example/dtrain.ini | 14 | ||||
-rw-r--r-- | dtrain/test/example/nc-1k-tabs.gz | bin | 0 -> 21185883 bytes | |||
-rw-r--r-- | dtrain/test/example/nc-1k.gz | bin | 0 -> 21474865 bytes | |||
-rw-r--r-- | dtrain/test/example/nc-wmt11.en.srilm.gz | bin | 0 -> 16017291 bytes | |||
-rw-r--r-- | dtrain/test/log_reg_dyer/bin_class.cc | 4 | ||||
-rw-r--r-- | dtrain/test/log_reg_dyer/bin_class.h | 22 | ||||
-rw-r--r-- | dtrain/test/log_reg_dyer/log_reg.cc | 39 | ||||
-rw-r--r-- | dtrain/test/log_reg_dyer/log_reg.h | 14 | ||||
-rw-r--r-- | dtrain/test/test.in | 3 | ||||
-rw-r--r-- | dtrain/test/toy/cdec.ini | 2 | ||||
-rw-r--r-- | dtrain/test/toy/dtrain.ini | 9 | ||||
-rw-r--r-- | dtrain/test/toy/in | 2 |
13 files changed, 116 insertions, 0 deletions
diff --git a/dtrain/test/example/cdec.ini b/dtrain/test/example/cdec.ini new file mode 100644 index 00000000..31a205c7 --- /dev/null +++ b/dtrain/test/example/cdec.ini @@ -0,0 +1,7 @@ +formalism=scfg +add_pass_through_rules=true +cubepruning_pop_limit=30 +scfg_max_span_limit=15 +feature_function=WordPenalty +feature_function=KLanguageModel test/example/nc-wmt11.en.srilm.gz +feature_function=RuleIdentityFeatures diff --git a/dtrain/test/example/dtrain.ini b/dtrain/test/example/dtrain.ini new file mode 100644 index 00000000..96bdbf8e --- /dev/null +++ b/dtrain/test/example/dtrain.ini @@ -0,0 +1,14 @@ +decoder_config=test/example/cdec.ini +k=100 +N=3 +gamma=0 #.00001 +epochs=2 +input=test/example/nc-1k-tabs.gz +scorer=stupid_bleu +output=- +stop_after=5 +sample_from=kbest +pair_sampling=all #108010 +select_weights=VOID +print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 PhraseModel_1 PhraseModel_2 PhraseModel_3 PhraseModel_4 PassThrough +tmp=/tmp diff --git a/dtrain/test/example/nc-1k-tabs.gz b/dtrain/test/example/nc-1k-tabs.gz Binary files differnew file mode 100644 index 00000000..45496cd8 --- /dev/null +++ b/dtrain/test/example/nc-1k-tabs.gz diff --git a/dtrain/test/example/nc-1k.gz b/dtrain/test/example/nc-1k.gz Binary files differnew file mode 100644 index 00000000..f638a166 --- /dev/null +++ b/dtrain/test/example/nc-1k.gz diff --git a/dtrain/test/example/nc-wmt11.en.srilm.gz b/dtrain/test/example/nc-wmt11.en.srilm.gz Binary files differnew file mode 100644 index 00000000..7ce81057 --- /dev/null +++ b/dtrain/test/example/nc-wmt11.en.srilm.gz diff --git a/dtrain/test/log_reg_dyer/bin_class.cc b/dtrain/test/log_reg_dyer/bin_class.cc new file mode 100644 index 00000000..19bcde25 --- /dev/null +++ b/dtrain/test/log_reg_dyer/bin_class.cc @@ -0,0 +1,4 @@ +#include "bin_class.h" + +Objective::~Objective() {} + diff --git a/dtrain/test/log_reg_dyer/bin_class.h b/dtrain/test/log_reg_dyer/bin_class.h new file mode 100644 index 00000000..3466109a --- /dev/null +++ b/dtrain/test/log_reg_dyer/bin_class.h @@ -0,0 +1,22 @@ +#ifndef _BIN_CLASS_H_ +#define _BIN_CLASS_H_ + +#include <vector> +#include "sparse_vector.h" + +struct TrainingInstance { + // TODO add other info? loss for MIRA-type updates? + SparseVector<double> x_feature_map; + bool y; +}; + +struct Objective { + virtual ~Objective(); + + // returns f(x) and f'(x) + virtual double ObjectiveAndGradient(const SparseVector<double>& x, + const std::vector<TrainingInstance>& training_instances, + SparseVector<double>* g) const = 0; +}; + +#endif diff --git a/dtrain/test/log_reg_dyer/log_reg.cc b/dtrain/test/log_reg_dyer/log_reg.cc new file mode 100644 index 00000000..ec2331fe --- /dev/null +++ b/dtrain/test/log_reg_dyer/log_reg.cc @@ -0,0 +1,39 @@ +#include "log_reg.h" + +#include <vector> +#include <cmath> + +#include "sparse_vector.h" + +using namespace std; + +double LogisticRegression::ObjectiveAndGradient(const SparseVector<double>& x, + const vector<TrainingInstance>& training_instances, + SparseVector<double>* g) const { + double cll = 0; + for (int i = 0; i < training_instances.size(); ++i) { + const double dotprod = training_instances[i].x_feature_map.dot(x); // TODO no bias, if bias, add x[0] + double lp_false = dotprod; + double lp_true = -dotprod; + if (0 < lp_true) { + lp_true += log1p(exp(-lp_true)); + lp_false = log1p(exp(lp_false)); + } else { + lp_true = log1p(exp(lp_true)); + lp_false += log1p(exp(-lp_false)); + } + lp_true *= -1; + lp_false *= -1; + if (training_instances[i].y) { // true label + cll -= lp_true; + (*g) -= training_instances[i].x_feature_map * exp(lp_false); + // (*g)[0] -= exp(lp_false); // bias + } else { // false label + cll -= lp_false; + (*g) += training_instances[i].x_feature_map * exp(lp_true); + // g += corpus[i].second * exp(lp_true); + } + } + return cll; +} + diff --git a/dtrain/test/log_reg_dyer/log_reg.h b/dtrain/test/log_reg_dyer/log_reg.h new file mode 100644 index 00000000..ecc560b8 --- /dev/null +++ b/dtrain/test/log_reg_dyer/log_reg.h @@ -0,0 +1,14 @@ +#ifndef _LOG_REG_H_ +#define _LOG_REG_H_ + +#include <vector> +#include "sparse_vector.h" +#include "bin_class.h" + +struct LogisticRegression : public Objective { + double ObjectiveAndGradient(const SparseVector<double>& x, + const std::vector<TrainingInstance>& training_instances, + SparseVector<double>* g) const; +}; + +#endif diff --git a/dtrain/test/test.in b/dtrain/test/test.in new file mode 100644 index 00000000..4f53335e --- /dev/null +++ b/dtrain/test/test.in @@ -0,0 +1,3 @@ +0 vorrichtung means [X] ||| vorrichtung ||| apparatus ||| LogP=0 ||| 0-0 __NEXT_RULE__ [X] ||| vorrichtung ||| means ||| LogP=-100 ||| 0-0 +1 Test test [X] ||| Test ||| test ||| LogP=0 ||| 0-0 __NEXT_RULE__ [X] ||| Test ||| xxx ||| LogP=-100 ||| 0-0 +2 kaputt broken diff --git a/dtrain/test/toy/cdec.ini b/dtrain/test/toy/cdec.ini new file mode 100644 index 00000000..98b02d44 --- /dev/null +++ b/dtrain/test/toy/cdec.ini @@ -0,0 +1,2 @@ +formalism=scfg +add_pass_through_rules=true diff --git a/dtrain/test/toy/dtrain.ini b/dtrain/test/toy/dtrain.ini new file mode 100644 index 00000000..5bfa5b2d --- /dev/null +++ b/dtrain/test/toy/dtrain.ini @@ -0,0 +1,9 @@ +decoder_config=test/toy/cdec.ini +k=4 +N=3 +epochs=2 +input=test/toy/in +scorer=stupid_bleu +sample_from=forest +output=- +print_weights=logp use_shell use_house PassThrough diff --git a/dtrain/test/toy/in b/dtrain/test/toy/in new file mode 100644 index 00000000..d7b7d080 --- /dev/null +++ b/dtrain/test/toy/in @@ -0,0 +1,2 @@ +0 ich sah ein kleines haus i saw a little house [S] ||| [NP,1] [VP,2] ||| [1] [2] ||| logp=0 [NP] ||| ich ||| i ||| logp=0 [NP] ||| ein [NN,1] ||| a [1] ||| logp=0 [NN] ||| [JJ,1] haus ||| [1] house ||| logp=0 use_house=1 [NN] ||| [JJ,1] haus ||| [1] shell ||| logp=0 use_shell=1 [JJ] ||| kleines ||| small ||| logp=0 [JJ] ||| kleines ||| little ||| logp=0 [JJ] ||| grosses ||| big ||| logp=0 [JJ] ||| grosses ||| large ||| logp=0 [VP] ||| [V,1] [NP,2] ||| [1] [2] ||| logp=0 [V] ||| sah ||| saw ||| logp=0 [V] ||| fand ||| found ||| logp=0 +1 ich fand ein grosses haus i found a large house [S] ||| [NP,1] [VP,2] ||| [1] [2] ||| logp=0 [NP] ||| ich ||| i ||| logp=0 [NP] ||| ein [NN,1] ||| a [1] ||| logp=0 [NN] ||| [JJ,1] haus ||| [1] house ||| logp=0 use_house=1 [NN] ||| [JJ,1] haus ||| [1] shell ||| logp=0 use_shell=1 [JJ] ||| kleines ||| small ||| logp=0 [JJ] ||| kleines ||| little ||| logp=0 [JJ] ||| grosses ||| big ||| logp=0 [JJ] ||| grosses ||| large ||| logp=0 [VP] ||| [V,1] [NP,2] ||| [1] [2] ||| logp=0 [V] ||| sah ||| saw ||| logp=0 [V] ||| fand ||| found ||| logp=0 |