diff options
Diffstat (limited to 'dtrain/test/logreg')
-rw-r--r-- | dtrain/test/logreg/bin_class.cc | 4 | ||||
-rw-r--r-- | dtrain/test/logreg/bin_class.h | 22 | ||||
-rw-r--r-- | dtrain/test/logreg/log_reg.cc | 39 | ||||
-rw-r--r-- | dtrain/test/logreg/log_reg.h | 14 |
4 files changed, 0 insertions, 79 deletions
diff --git a/dtrain/test/logreg/bin_class.cc b/dtrain/test/logreg/bin_class.cc deleted file mode 100644 index 19bcde25..00000000 --- a/dtrain/test/logreg/bin_class.cc +++ /dev/null @@ -1,4 +0,0 @@ -#include "bin_class.h" - -Objective::~Objective() {} - diff --git a/dtrain/test/logreg/bin_class.h b/dtrain/test/logreg/bin_class.h deleted file mode 100644 index 3466109a..00000000 --- a/dtrain/test/logreg/bin_class.h +++ /dev/null @@ -1,22 +0,0 @@ -#ifndef _BIN_CLASS_H_ -#define _BIN_CLASS_H_ - -#include <vector> -#include "sparse_vector.h" - -struct TrainingInstance { - // TODO add other info? loss for MIRA-type updates? - SparseVector<double> x_feature_map; - bool y; -}; - -struct Objective { - virtual ~Objective(); - - // returns f(x) and f'(x) - virtual double ObjectiveAndGradient(const SparseVector<double>& x, - const std::vector<TrainingInstance>& training_instances, - SparseVector<double>* g) const = 0; -}; - -#endif diff --git a/dtrain/test/logreg/log_reg.cc b/dtrain/test/logreg/log_reg.cc deleted file mode 100644 index ec2331fe..00000000 --- a/dtrain/test/logreg/log_reg.cc +++ /dev/null @@ -1,39 +0,0 @@ -#include "log_reg.h" - -#include <vector> -#include <cmath> - -#include "sparse_vector.h" - -using namespace std; - -double LogisticRegression::ObjectiveAndGradient(const SparseVector<double>& x, - const vector<TrainingInstance>& training_instances, - SparseVector<double>* g) const { - double cll = 0; - for (int i = 0; i < training_instances.size(); ++i) { - const double dotprod = training_instances[i].x_feature_map.dot(x); // TODO no bias, if bias, add x[0] - double lp_false = dotprod; - double lp_true = -dotprod; - if (0 < lp_true) { - lp_true += log1p(exp(-lp_true)); - lp_false = log1p(exp(lp_false)); - } else { - lp_true = log1p(exp(lp_true)); - lp_false += log1p(exp(-lp_false)); - } - lp_true *= -1; - lp_false *= -1; - if (training_instances[i].y) { // true label - cll -= lp_true; - (*g) -= training_instances[i].x_feature_map * exp(lp_false); - // (*g)[0] -= exp(lp_false); // bias - } else { // false label - cll -= lp_false; - (*g) += training_instances[i].x_feature_map * exp(lp_true); - // g += corpus[i].second * exp(lp_true); - } - } - return cll; -} - diff --git a/dtrain/test/logreg/log_reg.h b/dtrain/test/logreg/log_reg.h deleted file mode 100644 index ecc560b8..00000000 --- a/dtrain/test/logreg/log_reg.h +++ /dev/null @@ -1,14 +0,0 @@ -#ifndef _LOG_REG_H_ -#define _LOG_REG_H_ - -#include <vector> -#include "sparse_vector.h" -#include "bin_class.h" - -struct LogisticRegression : public Objective { - double ObjectiveAndGradient(const SparseVector<double>& x, - const std::vector<TrainingInstance>& training_instances, - SparseVector<double>* g) const; -}; - -#endif |