diff options
Diffstat (limited to 'dtrain/pairsampling.h')
-rw-r--r-- | dtrain/pairsampling.h | 17 |
1 files changed, 7 insertions, 10 deletions
diff --git a/dtrain/pairsampling.h b/dtrain/pairsampling.h index 93c0630a..66ca1706 100644 --- a/dtrain/pairsampling.h +++ b/dtrain/pairsampling.h @@ -13,7 +13,7 @@ accept_pair(score_t a, score_t b, score_t threshold) } inline void -all_pairs(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold) +all_pairs(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, float _unused = 1) { for (unsigned i = 0; i < s->size()-1; i++) { for (unsigned j = i+1; j < s->size(); j++) { @@ -35,19 +35,16 @@ all_pairs(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, sc * cmp middle 80% to low 10% */ bool -_108010_cmp_hyp_by_score(ScoredHyp a, ScoredHyp b) +_XYX_cmp_hyp_by_score(ScoredHyp a, ScoredHyp b) { return a.score < b.score; } inline void -part108010(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold) +partXYX(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, float hi_lo) { - sort(s->begin(), s->end(), _108010_cmp_hyp_by_score); + sort(s->begin(), s->end(), _XYX_cmp_hyp_by_score); unsigned sz = s->size(); - unsigned slice = 10; - unsigned sep = sz%slice; - cout << "sep " << sep <<endl; - if (sep == 0) sep = sz/slice; + unsigned sep = sz * hi_lo; for (unsigned i = 0; i < sep; i++) { for (unsigned j = sep; j < sz; j++) { if ((*s)[i].rank < (*s)[j].rank) { @@ -80,7 +77,7 @@ part108010(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, s * pair sampling as in * 'Tuning as Ranking' (Hopkins & May, 2011) * count = 5000 - * threshold = 5% BLEU + * threshold = 5% BLEU (0.05 for param 3) * cut = top 50 */ bool @@ -90,7 +87,7 @@ _PRO_cmp_pair_by_diff(pair<ScoredHyp,ScoredHyp> a, pair<ScoredHyp,ScoredHyp> b) return (fabs(a.first.score - a.second.score)) > (fabs(b.first.score - b.second.score)); } inline void -PROsampling(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold=0.05) +PROsampling(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, float _unused = 1) { unsigned max_count = 5000, count = 0; bool b = false; |