diff options
Diffstat (limited to 'dtrain/kbestget.h')
-rw-r--r-- | dtrain/kbestget.h | 140 |
1 files changed, 140 insertions, 0 deletions
diff --git a/dtrain/kbestget.h b/dtrain/kbestget.h new file mode 100644 index 00000000..d141da60 --- /dev/null +++ b/dtrain/kbestget.h @@ -0,0 +1,140 @@ +#ifndef _DTRAIN_KBESTGET_H_ +#define _DTRAIN_KBESTGET_H_ + +#include "kbest.h" // cdec +#include "verbose.h" +#include "viterbi.h" +#include "ff_register.h" +#include "decoder.h" +#include "weights.h" + +using namespace std; + +namespace dtrain +{ + + +typedef double score_t; + +struct ScoredHyp +{ + vector<WordID> w; + SparseVector<double> f; + score_t model; + score_t score; + unsigned rank; +}; + +struct LocalScorer +{ + unsigned N_; + vector<score_t> w_; + + virtual score_t + Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned rank)=0; + + void Reset() {} // only for approx bleu + + inline void + Init(unsigned N, vector<score_t> weights) + { + assert(N > 0); + N_ = N; + if (weights.empty()) for (unsigned i = 0; i < N_; i++) w_.push_back(1./N_); + else w_ = weights; + } + + inline score_t + brevity_penaly(const unsigned hyp_len, const unsigned ref_len) + { + if (hyp_len > ref_len) return 1; + return exp(1 - (score_t)ref_len/hyp_len); + } +}; + +struct HypSampler : public DecoderObserver +{ + LocalScorer* scorer_; + vector<WordID>* ref_; + virtual vector<ScoredHyp>* GetSamples()=0; + inline void SetScorer(LocalScorer* scorer) { scorer_ = scorer; } + inline void SetRef(vector<WordID>& ref) { ref_ = &ref; } +}; +/////////////////////////////////////////////////////////////////////////////// + + + + +struct KBestGetter : public HypSampler +{ + const unsigned k_; + const string filter_type_; + vector<ScoredHyp> s_; + + KBestGetter(const unsigned k, const string filter_type) : + k_(k), filter_type_(filter_type) {} + + virtual void + NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg) + { + KBest(*hg); + } + + vector<ScoredHyp>* GetSamples() { return &s_; } + + void + KBest(const Hypergraph& forest) + { + if (filter_type_ == "unique") { + KBestUnique(forest); + } else if (filter_type_ == "no") { + KBestNoFilter(forest); + } + } + + void + KBestUnique(const Hypergraph& forest) + { + s_.clear(); + KBest::KBestDerivations<vector<WordID>, ESentenceTraversal, + KBest::FilterUnique, prob_t, EdgeProb> kbest(forest, k_); + for (unsigned i = 0; i < k_; ++i) { + const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal, KBest::FilterUnique, + prob_t, EdgeProb>::Derivation* d = + kbest.LazyKthBest(forest.nodes_.size() - 1, i); + if (!d) break; + ScoredHyp h; + h.w = d->yield; + h.f = d->feature_values; + h.model = log(d->score); + h.rank = i; + h.score = scorer_->Score(h.w, *ref_, i); + s_.push_back(h); + } + } + + void + KBestNoFilter(const Hypergraph& forest) + { + s_.clear(); + KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(forest, k_); + for (unsigned i = 0; i < k_; ++i) { + const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d = + kbest.LazyKthBest(forest.nodes_.size() - 1, i); + if (!d) break; + ScoredHyp h; + h.w = d->yield; + h.f = d->feature_values; + h.model = log(d->score); + h.rank = i; + h.score = scorer_->Score(h.w, *ref_, i); + s_.push_back(h); + } + } +}; + + +} // namespace + +#endif + |