summaryrefslogtreecommitdiff
path: root/dtrain/dtrain.cc
diff options
context:
space:
mode:
Diffstat (limited to 'dtrain/dtrain.cc')
-rw-r--r--dtrain/dtrain.cc48
1 files changed, 24 insertions, 24 deletions
diff --git a/dtrain/dtrain.cc b/dtrain/dtrain.cc
index a70ca2f1..ad1ab7b7 100644
--- a/dtrain/dtrain.cc
+++ b/dtrain/dtrain.cc
@@ -10,11 +10,11 @@ dtrain_init(int argc, char** argv, po::variables_map* cfg)
("output", po::value<string>()->default_value("-"), "output weights file (or VOID)")
("input_weights", po::value<string>(), "input weights file (e.g. from previous iteration)")
("decoder_config", po::value<string>(), "configuration file for cdec")
- ("ksamples", po::value<size_t>()->default_value(100), "size of kbest or sample from forest")
+ ("k", po::value<size_t>()->default_value(100), "size of kbest or sample from forest")
("sample_from", po::value<string>()->default_value("kbest"), "where to get translations from")
("filter", po::value<string>()->default_value("unique"), "filter kbest list")
("pair_sampling", po::value<string>()->default_value("all"), "how to sample pairs: all, rand")
- ("ngrams", po::value<size_t>()->default_value(3), "N for Ngrams")
+ ("N", po::value<size_t>()->default_value(3), "N for Ngrams")
("epochs", po::value<size_t>()->default_value(2), "# of iterations T")
("scorer", po::value<string>()->default_value("stupid_bleu"), "scoring metric")
("stop_after", po::value<size_t>()->default_value(0), "stop after X input sentences")
@@ -75,8 +75,8 @@ main(int argc, char** argv)
hstreaming = true;
quiet = true;
}
- const size_t k = cfg["ksamples"].as<size_t>();
- const size_t N = cfg["ngrams"].as<size_t>();
+ const size_t k = cfg["k"].as<size_t>();
+ const size_t N = cfg["N"].as<size_t>();
const size_t T = cfg["epochs"].as<size_t>();
const size_t stop_after = cfg["stop_after"].as<size_t>();
const string filter_type = cfg["filter"].as<string>();
@@ -96,7 +96,7 @@ main(int argc, char** argv)
MT19937 rng; // random number generator
// setup decoder observer
- HypoSampler* observer;
+ HypSampler* observer;
if (sample_from == "kbest") {
observer = dynamic_cast<KBestGetter*>(new KBestGetter(k, filter_type));
} else {
@@ -274,45 +274,45 @@ main(int argc, char** argv)
decoder.Decode(src_str_buf[ii], observer);
}
- Samples* samples = observer->GetSamples();
+ vector<ScoredHyp>* samples = observer->GetSamples();
// (local) scoring
if (t > 0) ref_ids = ref_ids_buf[ii];
score_t score = 0.;
- for (size_t i = 0; i < samples->GetSize(); i++) {
- NgramCounts counts = make_ngram_counts(ref_ids, samples->sents[i], N);
+ for (size_t i = 0; i < samples->size(); i++) {
+ NgramCounts counts = make_ngram_counts(ref_ids, (*samples)[i].w, N);
if (scorer_str == "approx_bleu") {
size_t hyp_len = 0;
if (i == 0) { // 'context of 1best translations'
global_counts += counts;
- global_hyp_len += samples->sents[i].size();
+ global_hyp_len += (*samples)[i].w.size();
global_ref_len += ref_ids.size();
counts.reset();
} else {
- hyp_len = samples->sents[i].size();
+ hyp_len = (*samples)[i].w.size();
}
- NgramCounts counts_tmp = global_counts + counts;
- score = .9 * scorer(counts_tmp,
+ NgramCounts _c = global_counts + counts;
+ score = .9 * scorer(_c,
global_ref_len,
global_hyp_len + hyp_len, N, bleu_weights);
} else {
score = scorer(counts,
ref_ids.size(),
- samples->sents[i].size(), N, bleu_weights);
+ (*samples)[i].w.size(), N, bleu_weights);
}
- samples->scores.push_back(score);
+ (*samples)[i].score = (score);
if (i == 0) {
score_sum += score;
- model_sum += samples->model_scores[i];
+ model_sum += (*samples)[i].model;
}
if (verbose) {
if (i == 0) cout << "'" << TD::GetString(ref_ids) << "' [ref]" << endl;
- cout << _p5 << _np << "[hyp " << i << "] " << "'" << TD::GetString(samples->sents[i]) << "'";
- cout << " [SCORE=" << score << ",model="<< samples->model_scores[i] << "]" << endl;
- cout << samples->feats[i] << endl;
+ cout << _p5 << _np << "[hyp " << i << "] " << "'" << TD::GetString((*samples)[i].w) << "'";
+ cout << " [SCORE=" << score << ",model="<< (*samples)[i].model << "]" << endl;
+ cout << (*samples)[i].f << endl;
}
} // sample/scoring loop
@@ -321,18 +321,18 @@ main(int argc, char** argv)
//////////////////////////////////////////////////////////
// UPDATE WEIGHTS
if (!noup) {
- vector<Pair> pairs;
+ vector<pair<ScoredHyp,ScoredHyp> > pairs;
if (pair_sampling == "all")
sample_all_pairs(samples, pairs);
if (pair_sampling == "rand")
sample_rand_pairs(samples, pairs, &rng);
- for (vector<Pair>::iterator ti = pairs.begin();
+ for (vector<pair<ScoredHyp,ScoredHyp> >::iterator ti = pairs.begin();
ti != pairs.end(); ti++) {
SparseVector<double> dv;
- if (ti->first_score - ti->second_score < 0) {
- dv = ti->second - ti->first;
+ if (ti->first.score - ti->second.score < 0) {
+ dv = ti->second.f - ti->first.f;
//} else {
//dv = ti->first - ti->second;
//}
@@ -344,14 +344,14 @@ main(int argc, char** argv)
lambdas += dv * eta;
if (verbose) {
- cout << "{{ f("<< ti->first_rank <<") > f(" << ti->second_rank << ") but g(i)="<< ti->first_score <<" < g(j)="<< ti->second_score << " so update" << endl;
+ /*cout << "{{ f("<< ti->first_rank <<") > f(" << ti->second_rank << ") but g(i)="<< ti->first_score <<" < g(j)="<< ti->second_score << " so update" << endl;
cout << " i " << TD::GetString(samples->sents[ti->first_rank]) << endl;
cout << " " << samples->feats[ti->first_rank] << endl;
cout << " j " << TD::GetString(samples->sents[ti->second_rank]) << endl;
cout << " " << samples->feats[ti->second_rank] << endl;
cout << " diff vec: " << dv << endl;
cout << " lambdas after update: " << lambdas << endl;
- cout << "}}" << endl;
+ cout << "}}" << endl;*/
}
} else {
//SparseVector<double> reg;