diff options
Diffstat (limited to 'dpmert/line_optimizer.cc')
-rw-r--r-- | dpmert/line_optimizer.cc | 111 |
1 files changed, 111 insertions, 0 deletions
diff --git a/dpmert/line_optimizer.cc b/dpmert/line_optimizer.cc new file mode 100644 index 00000000..49443fbe --- /dev/null +++ b/dpmert/line_optimizer.cc @@ -0,0 +1,111 @@ +#include "line_optimizer.h" + +#include <limits> +#include <algorithm> + +#include "sparse_vector.h" +#include "ns.h" + +using namespace std; + +typedef ErrorSurface::const_iterator ErrorIter; + +// sort by increasing x-ints +struct IntervalComp { + bool operator() (const ErrorIter& a, const ErrorIter& b) const { + return a->x < b->x; + } +}; + +double LineOptimizer::LineOptimize( + const EvaluationMetric* metric, + const vector<ErrorSurface>& surfaces, + const LineOptimizer::ScoreType type, + float* best_score, + const double epsilon) { + // cerr << "MIN=" << MINIMIZE_SCORE << " MAX=" << MAXIMIZE_SCORE << " MINE=" << type << endl; + vector<ErrorIter> all_ints; + for (vector<ErrorSurface>::const_iterator i = surfaces.begin(); + i != surfaces.end(); ++i) { + const ErrorSurface& surface = *i; + for (ErrorIter j = surface.begin(); j != surface.end(); ++j) + all_ints.push_back(j); + } + sort(all_ints.begin(), all_ints.end(), IntervalComp()); + double last_boundary = all_ints.front()->x; + SufficientStats acc; + float& cur_best_score = *best_score; + cur_best_score = (type == MAXIMIZE_SCORE ? + -numeric_limits<float>::max() : numeric_limits<float>::max()); + bool left_edge = true; + double pos = numeric_limits<double>::quiet_NaN(); + for (vector<ErrorIter>::iterator i = all_ints.begin(); + i != all_ints.end(); ++i) { + const ErrorSegment& seg = **i; + if (seg.x - last_boundary > epsilon) { + float sco = metric->ComputeScore(acc); + if ((type == MAXIMIZE_SCORE && sco > cur_best_score) || + (type == MINIMIZE_SCORE && sco < cur_best_score) ) { + cur_best_score = sco; + if (left_edge) { + pos = seg.x - 0.1; + left_edge = false; + } else { + pos = last_boundary + (seg.x - last_boundary) / 2; + } + //cerr << "NEW BEST: " << pos << " (score=" << cur_best_score << ")\n"; + } + // string xx = metric->DetailedScore(acc); cerr << "---- " << xx; + // cerr << "---- s=" << sco << "\n"; + last_boundary = seg.x; + } + // cerr << "x-boundary=" << seg.x << "\n"; + //string x2; acc.Encode(&x2); cerr << " ACC: " << x2 << endl; + //string x1; seg.delta.Encode(&x1); cerr << " DELTA: " << x1 << endl; + acc += seg.delta; + } + float sco = metric->ComputeScore(acc); + if ((type == MAXIMIZE_SCORE && sco > cur_best_score) || + (type == MINIMIZE_SCORE && sco < cur_best_score) ) { + cur_best_score = sco; + if (left_edge) { + pos = 0; + } else { + pos = last_boundary + 1000.0; + } + } + return pos; +} + +void LineOptimizer::RandomUnitVector(const vector<int>& features_to_optimize, + SparseVector<double>* axis, + RandomNumberGenerator<boost::mt19937>* rng) { + axis->clear(); + for (int i = 0; i < features_to_optimize.size(); ++i) + axis->set_value(features_to_optimize[i], rng->NextNormal(0.0,1.0)); + (*axis) /= axis->l2norm(); +} + +void LineOptimizer::CreateOptimizationDirections( + const vector<int>& features_to_optimize, + int additional_random_directions, + RandomNumberGenerator<boost::mt19937>* rng, + vector<SparseVector<double> >* dirs + , bool include_orthogonal + ) { + dirs->clear(); + typedef SparseVector<double> Dir; + vector<Dir> &out=*dirs; + int i=0; + if (include_orthogonal) + for (;i<features_to_optimize.size();++i) { + Dir d; + d.set_value(features_to_optimize[i],1.); + out.push_back(d); + } + out.resize(i+additional_random_directions); + for (;i<out.size();++i) + RandomUnitVector(features_to_optimize, &out[i], rng); + cerr << "Generated " << out.size() << " total axes to optimize along.\n"; +} + |